已知定点Q(√3,0),P为圆N

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 20:34:50
已知定点Q(√3,0),P为圆N
已知圆M:(x+√5)^2+y^2=36,定点N(√5,0),点P为圆M上的动点,点Q在NP上,点G在MP上,且满足向量

提供韦达定理和三角函数两种解法,计算量都较大,具体依次见以下三图

已知圆M:(x^2+√5)+y^2=36,定点N(√5,0),点P为圆M上的动点,点Q在NP上,点G在MP上,且满足向量

P点坐标(-5+6cosa,6sina)Q点坐标(3cosa,3sina)PN向量是(10-6cosa,-6sina)过Q垂直PN的向量为(6sina,10-6cosa)k+(3cosa,3sina)

已知p^2-p-3=0,1/(q^2)-1/q-3=0,pq为实数,且p*q不等于1,则p/q=().

第二个已知等式1/(q^2)-1/q-3=0里的1/q看作另一个实数,即:设1/q=a那么等式1/(q^2)-1/q-3=0就化为a^2-a-3=0而所求p/q=()即:p*a=()根据条件p^2-p

已知圆ρ=1及定点A(3,0),P为圆上任意一点,∠POA的平分线交PA于点Q,求点Q的轨迹方程.

图自己画,设Q点极坐标为(ρ,θ),则∠POQ=∠QOA=θ,由余弦定理得:PQ^2=1+ρ^2-2ρcosθ①AQ^2=9+ρ^2-6ρcosθ②由三角形内角平分线定理知:PQ/OP=AQ/OA,∵

已知定点A为(2,0),圆x2+y2=1上有一个动点Q,若线段AQ的中点为点P,则动点P的轨迹是______.

设P的坐标为(x,y),Q(a,b),则∵定点A为(2,0),线段AQ的中点为点P,∴2x=2+a2y=b∴a=2x-2,b=2y∵Q是圆x2+y2=1上的动点∴a2+b2=1∴(2x-2)2+(2y

已知定点A(m,0),圆x2+y2=1上有一动点Q,若AQ的中点为P.

(1)设P(x,y),Q(x0,y0),则x0=2x−my0=2y,代入圆的方程x2+y2=1,得(2x-m)2+(2y)2=1,即动点P的轨迹方程C(x-m2)2+y2=14.(2)存在.设直线方程

已知定点A(2,0),P点在圆x2+y2=1上运动,∠AOP的平分线交PA于Q点,其中O为坐标原点,求Q点的轨迹方程

分析:设点Q的坐标为(x,y),点P的坐标为(x0,y0),由三角形内角平分线定理写出方程组,解出x0和y0,代入已知圆的方程即可.此求轨迹方程的方法为相关点法.再问:为什么x=2+2x0/1+2再答

已知定点A(m,0),圆x^2+y^2=1上有一动点Q,若AQ的中点为P.

1)设动点Q(x0,y0),P(x,y)则x=(x0+m)/2,y=y0/2解得x0=2x-m,y0=2y因为Q点在圆上,所以(2x-m)^2+(2y)^2=1整理得(2x-m)^2+4y^2=1即为

已知直线l过定点A(4,0)且与抛物线C:y²=2px(p>0)交于P、Q两点,若以PQ为直径的圆恒过原点O,

我们可以取特殊情况分析,即直线l垂直于x轴的情况x=4y^2=2p*4=8py=√(8p)因为以PQ为直径的圆恒过原点O所以AO=AP故4=√(8p)故p=2

已知定点A(2,0),P点在圆x2+y2=1上运动,∠AOP的平分线交PA于Q点,其中O为坐标原点,求Q点的轨迹方程&n

第一步的比,是用三角形内角平分线性质.再问:嗯嗯我知道了再答:知道了

已知定点A(2,0),P点在圆x2+y2=1上运动,∠AOP的平分线交PA于Q点,其中O为坐标原点,求Q点的轨迹方程.

在△AOP中,∵OQ是ÐAOP的平分线∴|AQ||PQ|=|OA||OP|=21=2设Q点坐标为(x,y);P点坐标为(x0,y0)∴x=2+2x01+2y=0+2y01+2即x0=3x−22y0=3

已知P、Q是平面内两个定点,求以P点为内心,以Q点为外心的三角形个数

无数个1.作圆Q,使点P在圆内2.在圆Q上任取一点A,作直线AP,交圆O于点D3.以D为圆心,DP为半径画弧,交圆O于B、C4.连接AB,AC则△ABC就是以P点为内心,以Q点为外心的圆由于点A是任意

已知定点A(3,0),p是圆O:x2+y2=1上的一动点,且∠AOP的平分线交直线PA于Q,求点Q的轨迹.

设点P(cosα,sinα),Q(x,y).∵PQ:QA=1:3,依定比分点公式得x=34(1+cosα)y=34sinα.消去参数α,即有(x−34)2+y2=(34)2,故所求轨迹是(34,0)为

已知点P是直线l:3x-4y+5=0上的动点,定点Q的坐标为(1,1),求线段PQ长的最小值及取得最小值时P的坐标.

线段PQ长的最小值为Q到直线l:3x-4y+5=0的距离,即d=|3−4+5|5=45,此时PQ:4x+3y-7=0,与直线l:3x-4y+5=0联立可得P(1325,4125).

定点A(3,0)为园x^2+y^2=1外一点,P为圆上的动点,∠POA的平分线交PA于Q,求Q点的轨迹

设Q(X,Y)P在X2+Y2=1上,p(cosa,sina)角平分线定理AQ:QP=OA:OP=3:1X=(3+3cosa)/(1+3)y=(0+3sina)/(1+3)化简得:(4y-3)平方+(4

已知定点A(2,0),圆x2+y2=1上有一个动点Q,若AQ的中点为P,求动点P的轨迹.

P(x,y)xQ=2x-2,yQ=2y(2x-2)^2+(2y)^2=1(x-1)^2+y^2=1/4再问:最后那个(x-1)2+y2=1\4从哪里来的?再答:这么简单,都不明白吗左边把2平方后=4,

已知圆x^2+y^2=4,P为圆上任意一点,定点A(3,0)若点Q在线段PA延长线上,且向量PQ=-2向量QA,则动点Q

设Q的坐标为(x,y),P的坐标为(s,t)则有:向量PQ=-2向量QAx-s=-2(3-x)可得:s=6-xy-t=-2(0-y)可得:t=-y因点P为已知圆x^2+y^2=4上任意一点所以有:(6

已知点P为圆x^2+y^2=4a^2上一动点,Q(2c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直

轨迹方程应该是双曲线方程:(x-c)^2/a^2-y^2/(c^2-a^2)=1过程不好排版,懒得写了

已知pq满足条件p-2q=1,若直线px+3y+q=0必过一个定点,则该定点坐标为

p=1+2q(1+2q)x+3y+q=0(x+3y)+(2x+1)q=0所以2x+1=0x=-1/2y=1/6(-1/2,1/6)