已知如图直线abcd被直线ef所截,角1加角3=90

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:12:23
已知如图直线abcd被直线ef所截,角1加角3=90
如图,已知直线AB和直线CD被直线GH所截,交点分别为EF,∠AEG+∠DFE=180°.

1.因为∠AEG=180°-∠DFE=∠CFE所以AB//CD(对应角相等)2.能因为AB//CD所以∠AEF=∠EFD(内错角相等)从而∠MEF=∠NFE所以EM//FN(内错角相等)补充:∠MEF

如图,已知直线AB,CD被直线EF所截,∠1+∠2=180,判断AB与CD是否平行,并说明理由

,∠1+∠2=180角1的对顶角,∠3=∠1,∠3+∠2=∠1+∠2=180则同旁内角互补,两直线平行

如图,直线AB与直线CD被直线EF所截,且∠1=∠2

证明:(1)使∠EGB=∠3,∠GHD=∠4若AB//CD,则∠3=∠4又∵∠1=∠2∴∠1+∠3=∠2+∠4即∠EGM=∠GHN∴GM//HD(内错角相等的两直线平行)第(2)问同理.再问:(2)能

.已知:如图正方体ABCD-A1B1C1D1中,AA1=a,E,F分别为BC,DC的中点,求证:求异面直线AD1与EF所

60度,因为EF平行于BD,AD1平行于BC1,三角形BDC1是等边三角形

如图,正方形ABCD与等腰直角三角形EFG(EF=EG)放在同一直线上,已知正方形的边长是6厘米,CF长16厘米,

CC'=32,∴C‘G=4,ΔC’GH是等腰直角三角形,D‘H=2∴SΔD’HK=1/2×2×2=2平方厘米.∴S重叠=S正方形-SΔD’HK=36-2=34平方厘米.

如图,已知正方形ABCD 的对角线长为2根号2,将正方形ABCD 沿直线EF折叠,则图中折成

采纳之后告诉你再问:说吧再答:其实就是等于正方形的周长,等于八,你认真看就知道

如图,已知正方形ABCD的对角线长为2倍根号2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为

没有图啊,哪是阴影?周长是8,也就是正方形的周长.你可以把这四个三角形的各个边都对应到正方形中,会发现这十二条边加起来,正好是正方形的四条边.由对角线为2根2.可知边长为2,所以周长为8.所以阴影的周

如图,已知正方形ABCD的边长为2,将正方形ABCD沿直线EF折叠,求图中阴影部分的周长!

再问:这是初一的数学题,再问:再问:求解!再答:连接BD;因为BC=CD,而且角C=90,所以:角CDB=角CBD=45;而角A=22.5,所以角ABC=67.5,所以:角ABD=22.5;因为A=2

已知:如图,在平行四边形ABCD中对角线AC、BD相交于点O,直线EF过点O,分别交AD、BC于

因为四边形ABCD是平行四边形,所以AC和BD互相平分,所以BO=DO,又角EDO=角FBO角BOF=角DOE所以三角形BOF全等于三角形DOE,所以EO=FO.同理可证三角形BOG全等于三角形DOH

如图,已知正方形ABCD的对角线长为22,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为______.

设正方形的边长为a,则2a2=(22)2,解得a=2,翻折变换的性质可知AD=A′B′,A′H=AH,B′G=DG,阴影部分的周长=A′B′+(A′H+BH)+BC+(CG+B′G)=AD+AB+BC

已知:如图4,直线AB∥CD,直线EF分别交AB

∵AB∥CD∴∠BEF+∠DFE=180°又∵PE平分∠BEFPF平分∠DFE∴∠PEF=1/2∠BEF∠PFE=1/2∠DFE∴∠PEF+∠PFE=1/2(∠∠BEF+∠DFE)=90°又∵三角形P

如图:直线AB,CD被直线EF,MN所截.

AB平行CD,∠2=∠1=115°  EF平行MN,∠3=∠2=115°  所以 ∠4=65°相等或者互补设两个角为∠A ,∠B 

如图,已知正方体ABCD-A1B1C1D1中,E,F分别是AD,AA1的中点.则直线AB1和EF所成的角为______.

连接A1C1、A1D和DC1,在正方体ABCD-A1B1C1D1中,由AD=B1C1,AD∥B1C1,可知AB1∥DC1,在△A1AD中,E,F分别是AD,AA1的中点,所以,有EF∥A1D,所以∠A

如图,已知正方体ABCD-A1B1C1D1中,E,F分别是AD,AA1的中点.则直线AB1和EF所成的角为______

连接A1C1、A1D和DC1,在正方体ABCD-A1B1C1D1中,由AD=B1C1,AD∥B1C1,可知AB1∥DC1,在△A1AD中,E,F分别是AD,AA1的中点,所以,有EF∥A1D,所以∠A

已知:如图,四边形ABCD是菱形,∠A=60°,直线EF经过点C,

∵菱形ABCD∴CB平行于AD∴△BCE相似于△AFE∴BE/AE=CB/AF即BE/(3+BE)=3/(3+2)BE=9/2第二题在做,稍后再问:谢谢啊再答:(2)三角形EBD与三角形BDF相似.证

已知:如图平行四边形ABCD中,E,F是直线

∵ABCD是平行四边形∴AD∥BC,AD=BC∴∠ADE=∠CBF∵AD=BC,∠ADE=∠CBF,DE=BF∴△ADE≌△CBF(SAS)∴AE=CF

如图,直线ABCD被直线EF所截,若

你的题目估计有问题,应该是“若<MEB=<EFD”,答案是平行因为EG,FH分别平分<MEB和<EFD,所以<1=<2=½<MEB=½<EFD,同位角相等,两直线平行,所以EG∥F

如图,在四边形ABCD中,直线EF经过其对角线的交点 ……

如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,(1)求证:△AOE≌△COF;(2)若AM:DM=2:3,△O

已知:如图,在平行四边形ABCD中,过对角线的交点O作直线EF交AD于E,交BC于F,求证:四边形AECF是平行四边

证明:∵平行四边形ABCD∴AD∥BC,AD=BC,AO=CO∴∠DAO=∠BCO∵∠AOE=∠COF∴△AOE≌△COF(ASA)∴AE=CF∴平行四边形AECF(对边平行且相等)

如图,在平行四边形ABCD中,过对角线的交点P任作一条直线EF

BE=DF证明连接BD∵ABCD是平行四边形∴BP=DP∠FDP=∠EBP∠DFP=∠BEP∴△FDP≌△EBP(ASA)∴BE=DF