已知如图正方形abcd的对角线相交于点o∠bac的平分线交bc于点e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:41:02
已知如图正方形abcd的对角线相交于点o∠bac的平分线交bc于点e
如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图,已知正方形ABCD的边长为1,E,F分别为AD,BC的中点,把正方形沿对角线AC折起直二面角,

过E作EG⊥AC于G,∵E是AD中点,则AG=AC/4,连FG∴FG²=5/8∵⊿ADC⊥⊿ABC∴EG⊥FG∵正方形ABCD的边长为1,则AC=√2在RT⊿EFG中EG=√2/4∴EF&#

如图已知四边形ABCD是边长为2的正方形以对角线BD为边

① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2   

如图,已知正方形ABCD 的对角线长为2根号2,将正方形ABCD 沿直线EF折叠,则图中折成

采纳之后告诉你再问:说吧再答:其实就是等于正方形的周长,等于八,你认真看就知道

如图,已知正方形ABCD的对角线长为2倍根号2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为

没有图啊,哪是阴影?周长是8,也就是正方形的周长.你可以把这四个三角形的各个边都对应到正方形中,会发现这十二条边加起来,正好是正方形的四条边.由对角线为2根2.可知边长为2,所以周长为8.所以阴影的周

如图:E是边长为1的正方形ABCD的对角线BD上一点

把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,

如图,已知P是正方形ABCD的对角线AC上的一点,PF//AD,PE⊥PB

第一问楼主会了,我就不写了.第二问:作PQ⊥AD于Q,所以PFDQ是矩形DF=PQ=sin∠PAQ*PA=sin45°*PA=√2/2*PA由第一问结论知DF=EF所以EF=√2/2*PACF=sin

已知,如图,正方形ABCD的对角线AC与BD

证明:∵ABCD正方形,∴∠DOF=∠COE=90°,OD=OC,∴∠OCE+∠OEC=90°,∵DG⊥CE,∴∠ODF+∠OEC=90°,∴∠OCE=∠ODF,∴ΔOCE≌ΔODF,∴OE=OF.

已知:如图,正方形abcd的对角线ac、bd相交于点o;正方形abcd的顶点

简单因为OBC和OCD为等腰三角形E为BC中点所以角OEC=90所以角OFC=360-270=90因为OCD与等腰三角形三线合一,F为CD中点

已知:如图,在正方形ABCD中,对角线AC,BD相交于点O

因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG

如图;已知AC是平行四边形ABCD的一条对角线,

先证明三角形ADN与三角形CBM全等得到DN=BM又有BM⊥AC,DN⊥AC所以DN//BMDN与BM平行且相等,所以是平行四边形

如图,已知正方形ABCD的对角线长为22,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为______.

设正方形的边长为a,则2a2=(22)2,解得a=2,翻折变换的性质可知AD=A′B′,A′H=AH,B′G=DG,阴影部分的周长=A′B′+(A′H+BH)+BC+(CG+B′G)=AD+AB+BC

已知:如图,正方形abcd的边长为4,g为对角线bd上的一点,dg=dc.h是ag上的一个动点,

因为DG=DC=AD所以三角形ADG是等腰的可以把这个三角形分离出来看连接HD因为HE⊥AD,HF⊥BD所以可以看作HE和HF分别是AHD和GHD两个三角形的高因为这两个小三角形的面积和是不变的(即三

已知正方形ABCD的对角线AC

解题思路:根据正方形的性质求解解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re

如图,在正方形ABCD中,对角线2倍根号2,则正方形的边长为?

设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2

如图,已知正方形ABCD的边长为10cm,AC是对角线..

楼主要自己画一下图啊,我以前画了好几次图上传的时候都不成功,浪费表情.其实画一下图就很明白了,数形结合是一种很重要的数学思想啊,尤其是几何,一定要多画图.因为AE平分∠BAC,EF⊥AC,所以BE=E

如图,已知正方形ABCD的边长是4,对角线AC、BD相交于点O,另一个边长也为4的正方形OEFG,两个正方形重

不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4

如图,P是正方形ABCD对角线BD上一点

连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P