已知如图在abc中bac的外角平分线与ba的延长线交于点d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:03:16
分析:首先求得AE也是∠A的外角的平分线,根据平角的定义和角平分线的定义求得∠EAB,∠EBA的度数,最后根据三角形的内角和定理即可求得∠AEB.∵E是∠C的平分线与∠B的平分线的交点,∴E点到CB的
1)∵BP平分∠CBD,∴点P到BC、BD的距离相等(角平分线上的点到这个角两边的距离相等)同理,∵CP平分∠BCE,∴点P到CB、CE的距离相等,∴点P到BD和CE(即AB、AC)的距离相等,∴点P
过E作EG⊥AD交AD于点G,作EH⊥AC交AC于点H,作EI⊥BC交BC于点I,AE平分∠CAB,EG=EH,BE平分∠CBD,EG=EI,在RT△EHC与RT△EIC中,EH=EI,EC=EC,R
过E作EG⊥AD交AD于点G,作EH⊥AC交AC于点H,作EI⊥BC交BC于点I,AE平分∠CAB,——》EG=EH,BE平分∠CBD,——》EG=EI,在RT△EHC与RT△EIC中,EH=EI,E
如上图角平分线的性质可知三红线相等,于是推得CE为平分线.
证明:过点P分别过点P作PD⊥AM于D,PE⊥BC于E,PF⊥AN于F.∵BP、CP是△ABC的外角平分线,∴PD=PE,PE=PF,∴PD=PF.∴点P必在∠BAC的平分线上.(到角两边距离相等的点
作EG垂直AB交AB于G,EH垂直BC于H点,EK垂直AC于K,∠1=∠2,EK=EG,∠3=∠4,EG=EH,∴EH=EK,∴点E在外角BVF的角平分线上再问:谢谢了再问:太给力了,你的回答完美解决
如图,连接EC,过E点分别做AF,BC,AB的垂线,垂足分别是F,D,G因为E在角CAB的平分线上,所以EF=EG同理,ED=EG, 所以EF
分别过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F.∵BP、CP是△ABC的外角平分线,∴PD=PE,PE=PF,∴PD=PF.∴点P必在∠BAC的平分线上.
设∠BAC为x度.∴∠BAD=x/2(角平分线定义)∴∠CBP=(a+x)/2(角平分线定义)(三角形外角性质一)∴∠ABC=180°-x-a(三角形内角和为180°)∴∠P=180°-(a+x)/2
作EF垂直BA延长线于F,EG垂直AC于G,EH垂直BC延长线于H因为BE平分∠ABC,推出EH=EF因为CE平分∠ACB的外角,推出EH=EG所以EF=EG又有公共边AE,所以直角三角形AFE和AG
原题:如图,在三角形ABC中,AD平分角BAC,BE平分角ABC,CE平分角ACB的外角, 求证:(1)AE是角BAC外角的平分线 (2)AE垂直AD证明:
题为:已知三角形ABC中,AB=AC,AD垂直BC于D,AE是角BAC的外角平分线,CE垂直AE于E,求证四边形ADCE为矩形;求证四边形ABDE为平行四边形.1、不难看出AD、AE都是角平分线,所以
再问:谢谢,请问过程就这么少吗再答:
证明:过点P分别作AM、BC、AN的垂线PE、PF、PD,E、F、D为垂足,∵CP是∠MCB的平分线,∴PE=PD.同理:PF=PD.∴PE=PF.∴点P在∠BAC的平分线上.
用角平分线来证:过点E分别作BA、的BC延长线的垂线,再作AC的垂线,角平分线的定理即其逆定理.
过E分别作BA,BC,AC的垂线,交BA,BC,AC于M,N,P,∵BE平分∠ABC,∴△BEM≌△BEN(A,A,S)∴EM=EN.同理:EP=EN,∴EM=EP,即△AEM≌△AEP(H,L)∴∠