已知如图p是三角型aoc内任一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:09:12
已知如图p是三角型aoc内任一点
已知直线AB‖CD,E,F分别为直线AB,CD上的点,P为平面内任一点,连接PE和PF.(1)当P位置如图1所示,求证:

过P作PG平行AB所以角PEB=GPF因为AB平行CD所以PG平行CD所以角GPF=PFD所以角EPF=EPG+GPF等量代换,结论可证再问:第二问是重点。第一问很简单

如图,三角形ABC内任一点P,连接PA、PB、PC,求证1/2(AB+BC+AC)

证明:在三角形PAB中,PA+PB大于AB,同理得:PA+PC大于AC,PB+PC大于BC,三式相加,得:2(PA+PB+PC)大于AB+BC+AC,所以1/2(AB+BC+AC小于AP+BP+CP.

已知:D,E,F分别是△ABC中BC,CA,AB的中点,P是平面内任一点,

延长PF到K,使PA,PB,AK,BK组成平行四边形有PA+PB=2PF同理PB+PC=2PDPA+PC=2PE三等式相加得到2(PA+PB+PC)=2(PD+PE+PF)====>PA+PB+PC=

附加题:如图,已知点P在△ABC内任一点,试说明∠A与∠P的大小关系.

延长BP交AC于D,则∠BPC>∠PDC,而∠PDC>∠A,所以∠BPC>∠A.

已知AB平行CD,E是平面内任一点 1.如图,猜想角1,角2,角3之间的关系 2.证明你的猜想

∠3+∠2=∠1延长EA交CD于M点∵∠EMD=∠3+∠2(三角形外角等于不相邻的两内角之和)AB∥CD∴∠EMD=∠1(两直线平行,同位角相等)∴∠1=∠2+∠3(等量代换)

如图,已知ΔABC是正三角形,P是ΔABC内的任一点,且PD‖AB、PE‖BC、PF‖AC,若ΔABC的周长为12,求P

由于P点任意,且DEF位置不确定,应该是没有具体值的只有范围0

已知,点p是△ABC内任一点;求证AB+AC>BP+PC

延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC再问:AB+AM+CM+PM>

如图,已知P是三角形ABC内任一点,求证:AB+AC大于BP+PC

延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC

如图,已知O是△ABC内任一点,试说明:OB+OC<AB+AC

证明:延长BO交AC于D三角形ABD中,AB+AD>BD,即AB+AD>OB+OD三角形COD中,OD+CD>OC所以AB+AD+CD>OB+OD+CD>OB+OC即AB+AC>OB+OC

如图,三角形A'B'C'是由三角形ABC平移后得到的,已知三角形ABC中任一点P(x0,y0)

分析:(1)由三角形ABC中任意一点P(x0,y0),经平移后对应点为P′(x0+5,y0-2),可得三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,即可得出对应点的坐标.(2)利用对应

如图,已知:OC是,角AOB内的一条射线,且角AOC=2角BOC,角AOC与5/2角BOC互补

条件一:AOC=2BOC条件二:AOC+5/2BOC=180(两个角的度数相加等于180度时这两个角互补)可得:AOC=80BOC=40

已知:如图,P是△ABC内任一点,求证:∠BPC>∠A.

证明:如图,延长BP交AC于D.∵∠BPC>∠PDC,∠PDC>∠A,∴∠BPC>∠A.

如图①所示,O是直线AB上一点,OC是任一条射线,OD.OE分别是∠AOC和∠BOC的平分线.

因为OD.OE分别是∠AOC和∠BOC的平分线,所以∠AOD=∠COD,∠BOE=∠COE,推出2∠AOD+2∠COE=180度∠AOD+∠COE=90度(1)∠AOD的补角为∠BOD∠BOE的余角为

如图(↓),已知,O为直线AB上一点,OC是任一条射线,OD、OE分别是∠AOC和∠COB的平分线

(1)∵∠AOB为平角,为180°,∠BOC+∠AOC=180°,180°-∠BOC=108°.∴∠COD=108°/2=54°∠EOC:因为OE是∠COD的平分线,∴∠EOC=72°/2=36°.(

如图,四边形ABCD是矩形,P是矩形内任一点.求证:PA的平方+PC的平方=PB的平方+PD的平方

过点P作EF垂直BC,交AD于点E,交BC于点F则PA的平方=AE的平方+PE的平方,PC的平方=PF的平方+FC的平方PB的平方=PF的平方+BF的平方,PD的平方=PE的平方+ED的平方因为AE=

如图,已知矩形ABCD,P是平面内任一点,连结PA,PB,PC,PD,求证:PA²+PC²=PB&#

证明:过点P作EF⊥AD交AD于点E,BC于点F;     过点P作GH⊥AB交AB于点G,CD于点H.    

如图,在△ABC中,AD⊥BC,已知∠ABC>∠ACB,P是AD上的任一点,求证:AC+BP<AB+PC、

证明:在DC上取DB′=DB,连接PB′,AB′交PC于E点,由轴对称可知,PB′=PB,AB′=AB,由三角形三边关系定理,得AB+PC=AB′+PC=AE+EB′+PE+EC>PB′+AC=PB+