已知如图ab为直径 弧de=弧be

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:40:40
已知如图ab为直径 弧de=弧be
如图,已知AB是圆O的直径,D是弧ABC的中点,弦DE垂直AB垂足为F,DE交AC于点G,连接AD

因为弦DE垂直AB垂足为F所以A为弧EAB的中点连接AEAE=AB所以,

已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,DE是⊙O的切线.

证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴AD是∠BAC的平分线,即∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC.∵DE是⊙O

如图,已知AB和DE是圆O的两条弦,且AB平行DE,C为弧DE上一点,弧CD=弧BD,连接AC交DE于P,连接OP

证明:1、∵AB∥DE∴弧AE=弧BD∵弧CD=弧BD∴弧AE=弧CD∵弧AC=弧AE+弧CE,弧DE=弧CD+弧CE∴弧AC=弧DE2、过圆心O作OG⊥AC于G,OH⊥DE于H,连接OA、OD∵弧A

如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE⊥AC于E.

(1)证明:连接OD交BC于F;∵D为弧BC的中点,∴OD⊥BC,∵AB为直径,∴∠ACB=90°;又∵DE⊥AC,∴∠CED=∠ECF=∠CFD=90°,∴∠FDE=90°,即OD⊥DE;又∵OD为

如图,CD为圆E的直径,以D为圆心,DE长为半径做弧,交圆E于AB两点,求证:弧AB=弧CB=弧B

证明:连结AE,BE,AD,BD.因为CD是圆E的直径,A,B两点在圆E上,所以AE=BE=DE,因为DE是弧AB的半径,D是弧AB的圆心,所以AD=BD=DE,所以三角形ADE和三角形BDE都是等边

如图,AB为圆O的直径,D为弧AC的中点,DE⊥AB于点E,DE交AC于点F.求证:AF=DF.

证明:连接OD交AC于M,连接AD∵OA=OB∴∠OAD=∠ODA∵D是弧AC的中点∴OD⊥AC【平分弦所对应弧的直径,垂直平分这条弦】∵DE⊥AB∴∠AMO=∠DEO=90º∴∠OAM=∠

如图,AB为圆O的直径,AC为弦D为弧BC的中点,DE⊥AC于E,DE=6,CE=2.求证:1DE是圆O的切线 2求圆o

连接OD交BC于F.连接OC(1)在⊿BOF和⊿COF中因弧BD=弧CD,则∠BOD=∠COD(等弧对等角),即∠BOF=∠COF又OB=OC(半径相等)且OF=OF所以⊿BOF≌⊿COF,得BF=C

已知:如图,圆O中,AB是直径,CO垂直AB,D是CO的中点,DE//AB,求证:弧CE=2弧AE

连接OE因为OD=1/2OC=1/2OE所以角DOE=60°则角AOE=30°圆心角的比等于所对应的弧度的比就是这样,明白没?

如图,ab,cd是圆o的直径,弦ce‖ab,b是弧de的中点么

∵AB∥CE,∴弧AC=弧BE,∵∠AOC=∠BOD,∴弧AC=弧BD,∴弧DB=弧EB,即点B是弧DE的中点.

如图,AB为圆O直径,点C为弧AB的中点,弦CE交AB于点F,D为AB延长线上一点,且DE=DF

1)证明:DE=DF,则∠EDF=∠DFE=∠CFO.连接OC,OE,OC=OE,则∠OCE=∠OEC.又点C为半圆AB的中点,则OC⊥AB.∴∠OCE+∠CFO=90°,则∠OEC+∠EDF=90°

如图,已知AB、CD是O的的两条直径,弦DE//AB.若弧DE的度数为40°,则角BOC=?

AB‖ED弧BD=(180°-40°)/2=70°∠BOC=180°-70=110°

如图,已知AB和CD是⊙O上的两条直径,AE为弦,若AE//CD,求证DE弧=DB弧.

证明:连接OE,则有OE=OC∴∠OAE=∠OEA∵AE//CD∴∠OAE=∠COA,∠OEA=∠DOE∵∠BOD=∠COA∴∠BOD=∠DOE∴DE弧=DB弧

已知:如图,AB、CD为圆O的直径,弦CE平行AB .DE交AB于F,求证,EF=DF

证明:∵CD是⊙O的直径∴∠CED=90°(直径所对的圆周角是直角)∵CE//AB∴∠AFD=∠CED=90°∵AB是⊙O的直径∴EF=DF(垂径定理:垂直于弦的直径平分弦及弦所对的两条弧)

如图,已知CD是圆心O的直径,AB垂直于CD,垂足为C,弦DE//OA,直线AE、CD相交于点B.

(1)证明:连接OE,∵DE∥OA,∴∠COA=∠ODE,∠EOA=∠OED,∵OD=OE,∴∠ODE=∠OED,∴∠COA=∠EOA,又∵OC=OE,OA=OA,∴△OAC≌△OAE,∴∠OEA=∠

如图,AB为圆O的直径,AC为弦D为弧BC的中点,DE⊥AC于E,DE=6,CE=2(1)求证:DE是圆O的切线(2)求

(1)证明:连接BC、ODAB为直径,则∠ACB=90,BC⊥ACDE⊥AC,∴DE‖BCD是弧BC中点,根据垂径定理,OD⊥BC.∴OD⊥DEDE是圆的切线(2)连接AD.∠CDE为弦切角,∠DAE

已知如图,AB、CD是圆心O的两条直径弦AE//CD求证弧BD=弧DE

证明:∵∠AOC=∠BOD【对顶角相等】∴弧AC=弧BD【同圆内,相等圆心角所对的弧相等】∵AE//CD【已知】∴弧AC=弧DE【平行的两弦所夹的弧相等】∴弧BD=弧DE【等量代换】

如图,已知AB为⊙O的直径,BC=2AD,DE⊥AB,求证:BC=2DE.

延长DE交圆于点F,根据垂径定理得DF=2AD,又已知BC=2AD,所以,DF=BC,BC=DF,所以BC=2DE.

如图,已知⊙O中,直径CD与弦AB垂直,垂足为E,CD=10,DE=2,求AB的长

连接AO,OE=OD-ED=5-2=3AO=1/2CD=5在直角三角形AOE中根据勾股定理得到AE=4则AB=2AE=8

如图,AB,DE是圆O的直径,弦AC‖DE,求证:弧BE=弧CE

证:连接OC∵AC‖DE∴∠BOE=∠OAC,∠OCA=∠COE∵OA=OC∴∠OAC=∠OCA∴∠BOE=∠COE∴弧BE=弧CE

如图,已知AB为○O直径,BC是○O切线,切点为B,E为BC中点,连接AC,交○O于点D,连接DE(1)求证:BC²=C

解题思路:本题主要根据构建直角三角形,求证三角形相似,得到对应线段成比例。解题过程:最终答案:略