?题目 设随机变量X在区间(0,1)服从均匀分布 求Y=ex的概率密度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:04:55
(1)f(x)=1/(b-a)=1/4P{-0.5
(1)由已知,f(x)=1,(0
做出这个效果很辛苦,
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
f(x)=1/3-2
用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0
我猜是fy(y)=5e^(-5y)x服从U[0,0.2]fx(x)=1/0.2=5(0
详细过程点下图查看
X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2,D(X)=(b-a)²/12证明如下:设连续型随机变量X~U(a,b)那么其分布函数F(x)=(x-a)/(b-a),a≤x≤
密度函数:f(x)=1/(b-a)[a,b]f(x)=0其它x数学期望Ex=∫(a,b)x/(b-a)dx=0.5/(b-a)(b^2-a^2)=(a+b)/2Ex=(a+b)/2方差Dx=∫(a,b
1x的概率密度为f(x)=1/(0.2-0)=5,0x)25e^(-5y)dy=1/e
X:服从(0,1)均匀分布x~U(0,1)Y:X到a的距离。就是说Y~U(0,a)a>0.5或Y~U(0,1-a)a
F(y)=P(Y=e^(-y/2))=1-P(x
P(Y=1)=P(X>0)=2/3,P(Y=0)=P(X=0)=0,P(Y=-1)=P(X
U(-1,2)概率密度f(x)=1/3,2>x>-10,其他P(Y=1)=P(X>0)=∫(下限0到上限正无穷大)f(x)dx=∫(下限0到上限2)1/3dx=2/3
若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X
服从正态分布,密度函数关于x=0对称.所以B再问:为什么说密度函数关于x=0对称。所以B再答:··概率的大小等于密度函数跟X轴的面积嘛,对称轴左边的总面积不就是一半嘛~
0.52x+(118-x)*0.33=53