?题目 求不定积分 ∫dh 根号2h
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:09:36
令u=√v,v=4x²+1,dv=8xdx∫√(4x²+1)dx=∫√v*1/(8x)*dv,这个x无法抵消,所以要用另一种代换法√(4x²+1)=√[(2x)²
=-1/2∫√(1-x^2)d(1-x^2)=-1/2×2/3√(1-x^2)^3+C=-1/3√(1-x^2)^3+C
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2))-∫xdln(x+√(1+x^2))=xln(x+√(1+x^2))-∫x/√(1+x^2)dx=xln(x+√(1+x^2))-(1
∫dx/x[根号1-(ln^2)x]=∫d(lnx)/[根号1-(ln^2)x]=∫dt/[根号1-t^2](设t=lnx)=arcsint+C=arcsin(lnx)+C
答案:(x/2)√(x²-a²)-(a²/2)ln|x+√(x²-a²)|+C令x=a*secz,dx=a*secztanzdz,假设x>a∫√(x&
设x=tant=>dx=d(tant)=sec²tdt∴∫(1/√(1+x^2))dx=∫(1/sect)sec²tdt=∫sectdt=∫cost/(cost)^2dt=∫1/(
∫lnx/√xdx=2∫lnxd(√x)分部积分=2√xlnx-2∫√x/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+C希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮
分部积分法:∫√(9+x^2)dx=x√(9+x^2)dx-∫x^2/√(9+x^2)dx=x√(9+x^2)dx-∫(9+x^2-9)/√(9+x^2)dx=x√(9+x^2)dx-∫√(9+x^2
分母应该是√(1-e^2x)吧令e^x=t,x=lnt,dx=1/tdt∫e^x/√(1-e^2x)dx=∫t/√(1-t²)•1/tdt=∫1/√(1-t²)dt=a
原式=∫x^(1/2)*(x^2-5)dx=∫[x^(5/2)-5x^(1/2)]dx=2/7*x^(7/2)-10/3*x^(3/2)+C
解∫x√(4x²-1)dx=1/8∫√(4x²-1)d(4x²-1)=1/8∫√udu=1/8×(2/3)×u^(3/2)+C=1/12(4x²-1)^(3/2
☆⌒_⌒☆答案在这里,很简单而已.
∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)
∫√(x²-9)/xdx=√(x²-9)-3arcsec(x/3)+C
∫dx/[arcsinx.√(1-x^2)]=∫darcsinx/arcsinx=ln|arcsinx|+C
∫e^√xdx=2∫√xe^√xd√x=2∫√xde^(√x)=2√xe^(√x)-2∫e^√xd√x=2√xe^(√x)-2e^(√x)+C
4*x^(1/2)4倍根号X