已知在数列an中首项a1=1 3,且前n项和算数平

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:09:51
已知在数列an中首项a1=1 3,且前n项和算数平
在数列{an}中,已知a1=2,a(n+1)=2an/(an+1),证明数列{1/an-1}为等比数列,并求出数列{an

a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-

在数列{an}中 ,n属于N*,已知a1=2

(1)an=a1+(n-1)d=2+(n-1)c=cn-c+2(2)a2^2=a1*a3(2c-c=2)^2=2*(2c+2)c=0

已知数列{an}满足a1=1,a2=-13,an+2-2an+1+an=2n-6

1+2+3+.+n-1=(1+n-1)(n-1)/2等差数列求和哦~所以跟外面的2约了!

在数列中,已知a1=1/3,(a1+a2+...+an)/n=(2n-1)*an.

当n=2时(a1+a2)/2=(2*2-1)*a2得a2=1/15当n=3时(a1+a2+a3)/3=(2*3-1)*a3得a3=1/35当n=4时(a1+a2+a3+a4)/4=(2*4-1)*a4

在数列{an}中,已知a1=1/3,a1+a2+.+an/n=(2n-1)an (1)求,a2,a3,a4,并猜想an的

1)自己算2)可以猜,也可算出a1+a2+.+an=(2n-1)nana1+a2+.+a(n+1)=(2n+1)(n+1)a(n+1)a(n+1)=(2n+1)(n+1)a(n+1)-(2n-1)na

在数列{an}中已知a1=1,an+1=an+2n-1,求an.

∵an+1=an+2n-1,∴an-an-1=2n-2,∵a1=1,∴a2-1=1;a3-a2=2;a4-a3=22;…;an-an-1=2n-2,∴上面各式相加得,an-1=1+2+22+23+…+

已知在数列{an}中,a1=1,an+1=2an-n^2+3n(n

n+1-bn=an+1-(n+1)^2+n+1-an+n^2-n等于一个常数,就可以证明是以神马为首项神马为公差的等比

已知在数列An中,A1=2 A(n+1)=An+n 求An的通项公式

A1=2A(n+1)-An=nAn=[An-A(n-1)]+[A(n-1)-A(n-2)]+…+(A2-A1)+A1=(n-1)+(n-2)+…+2+1+2=(n-1)*n/2+2=(n^2-n+4)

已知在数列{an}中,a1=2,an=3a[(n-1)](下标)-2,求an

a(n)=3a(n-1)-2a(n)-1=3a(n-1)-3(a(n)-1)/(a(n-1)-1)=3所以an-1为等比数列an=3^(n-1)+1请选为最佳答案,谢谢!

已知数列{an}中,a1

解题思路:构造数列解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

已知数列{an}中,a1=56

∵数列{log2(an+1-an3)}是公差为-1的等差数列,∴log2(an+1-an3)=log2(a2-13a1)+(n-1)(-1)=log2(1936-13×56)-n+1=-(n+1),于

在数列an中,已知a1=-20,an+1-an=4,求a1绝对值+a2的绝对值+...+an的绝对值的值

首先,利用a1=-20,an+1-an=4,求出an=4n-24,再讨论n值((1,6),(6,)再问:讨论n的奇偶吗?还是啥啊再答:讨论an的正负。

在数列an中,已知a1=1,Sn=n的平方*an,求通项公式an

an=Sn-Sn-1=>an=n^2*an-(n-1)^2*an-1an/an-1=(n-1)/n+1)所以an-1/an-2=(n-2)/n)an-2/an-3=(n-3)/n-1)an-3/an-

在数列an中已知a1=2/3,an=2an-1/2an-1+1

(1)、a2=2a1/(2a1+1)=(4/3)/(4/3+1)=4/73a=2a2/(2a2+1)=8/15因为a2-a1不等于a3-a2,所以an不是等差数列又因为a2/a1不等于a3/a2,所以

在数列{an}中,已知a1=1,an+1=2an+n-1(n属于正整数).

a[n+1]+n+1=2an+2n数列tn=an+n是首项为t1=a1+1=2,公比为2的等比数列tn=2^n,an=2^n-nbn=n*an+n的2次幂=n(an+n)=n*2^n数学归纳法n=1是

在数列{an}中,已知an+1=an+n,当an+1=2009时,求|a1|的最小值

a(n+1)=an+na(n+1)-an=na2-a1=1a3-a2=2a4-a3=3.an-a(n-1)=n-1叠加得an-a1=1+2+...+(n-1)=n(n-1)/2所以an=a1+n(n-

已知数列{an}满足a1=1,a2=-13,an+2-2an+1+an=2n-6

(I)∵bn=an+1-an,∴an+2-2an+1+an=bn+1-bn=2n-6∴bn−bn−1=2(n−1)−6,bn−1−bn−2=2(n−2)−6,…,b2−b1=2−6将这n-1个等式相加

在数列{an}中,已知(a1+a2+…+an)/n=(2n-1)an

sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1

在数列{an}中,已知a1=-20,a(n+1)=an+4,则|a1|+|a2|+|a3|+...+|a20|=

分情况所有正项用前n项和所有负项先用前n项和加再取相反数之后再加就算出结果了为480