已知在四边形abcd中ef分别是adbc的中点,连接bedf

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:49:13
已知在四边形abcd中ef分别是adbc的中点,连接bedf
已知:在四边形ABCD中,M,N,E,F分别为AD,BC,BD,AC的中点.求证:MN,EF互相平分

证明;连接ME,EN,NF,FM.点M,E分别为AD,BD的中点,则ME为三角形ABD的中位线.所以,ME∥AB;且ME=AB/2;同理:FN∥AB;且FN=AB/2;故:ME∥FN;且ME=FN.所

已知,如图,在四边形ABCD中,M,N,E,F分别为AD,BC,BD,AC的中点.求证:MN,EF互相平分.

ME,FN分别为三角形DAB,CAB的中位线,所以ME平行且等于(1/2)AB,FN平行且等于(1/2)AB,所以ME平行且等于FN,所以MENF为平行四边形,所以MENF的对角线EF,MN互相平分.

已知在四边形ABCD中,E.F分别是边AD.BC的中点,且EF平行于AB,与对角线AC.BD分别交于M.N两点,若EF=

因为:EF平行AB即:EN平行AB所以:三角形DEN相似三角形DAB因为:E是AD的中点所以:EN/AB=DE/DA=1/2所以:EN=1/2AB同理:由于F是BC的中点,在三角形ACB中,三角形CM

如图.已知四边形ABCD中,EF,GH分别为AB,BC,CD,DA的中点.求证:EFGH为平行四边形.

在△ABC中,因为E.F分别是AB、BC的中点,即EF是△ABC的中位线,所以EF//AC,EF=1/2AC,同理,HG//AC,HG=1/2AC所以EF//HG,EF=HGEFGH为平行四边形

已知:在四边形ABCD中,AB=DC,E,F分别是AD,BC的中点,GH垂直于EF与AB,DC分别交于F,H,

证明:延长FE分别交BA,CD于P,Q,取AC中点M,连接EM、FM因为E是AD的中点,M是AC中点所以EM是△ABC的中位线所以EM=AB/2且ME//AB同理FM=CD/2且MF//CD由于AB=

已知:如图在四边形ABCD中,∠BAD=∠BCD=90°,C,E分别是对角线BD,AC的中点,求证;EF

证明:连接AE,CE∵∠BAD=∠BCD=90°  点E是BD的中点∴AE=1/2BD,CE=1/2BD(直角三角形斜边中线等于斜边的一半)∴AE=CE∵点F是AC的中点∴EF⊥A

已知空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF//平面BCD

E,F分别为AB,AD中点,那么EF就是三角形ABD的中位线,很明显EF∥BDBD又是三角形BCD上的一边,根据定理,平面外一条直线平行于平面内任意一条直线,那么这条直线就与平面平行所以EF∥平面BC

已知:在四边形ABCD中,E,F分别为AB,CD的中点,求证:EF<(AC+BD).

连结AD中点O.连结OE、OF,则在三角形ADC中,有OF=AC/2,同理,在三角形ABD中,有OE=BD/2,而EF≤OE+OF=(AC+BD)/2,所以2EF≤AC+BD.(等号当O、E、F成一直

数学难题已知,如图在四边形ABCD中,E,F分别是AB,CD的中点,求证EF

取BC中点M,连接EM、FM在三角形ABC中,EM为中位线,所以EM=1/2*AC同理可得FM=1/2*BD所以EM+FM=1/2*(AC+BD)在三角形EFM中,根三角形三边关系定理可得EF

)(easy!)已知,如图,在四边形ABCD中,AB>CD,E、F分别为对角线BD、AC的中点,求证:EF>1/2(AB

一楼的答案是不对的.应该是这样:取AD的中点,设为G,联结EG,FG那么才有一楼所说的EG=1/2AB,FG=1/2CD三角形EFG中,根据两边之差小于第三边,得FG-EGFG-EG=1/2AB-1/

四边形证明题、已知,如图、在平行四边形abcd中、ef分别是ab.cd的中点.若ad⊥bd.判断四边形debf的形状.说

四边形DEBF为菱形AD⊥BDAD‖BC所以BD⊥BC则△CBD,△ABD为直角三角形直角三角形斜边中线等于斜边一半所以DE=1/2AB=BEDF=1/2CD=BF而CD=AB所以DE=BE=BF=D

如图所示,已知四边形ABCD中,AB=CD,AD=BC,点E、F分别在BC、AD边上,且AF=CE,EF和对角线BD相交

证明:∵AB=CD,AD=BC∴四边形ABCD是平行四边形∴AD//BC∴∠FDO=∠EBO,∠DFO=∠BEO∵AF=CE∴AD-AF=BC-CE即DF=BE∴⊿DFO≌⊿BEO(ASA)∴DO=B

已知四边形ABCD中,E、F、G分别在AD、BD、CD上,且EF∥AB,FG∥BC.求证:△DEG∽△DAC.

证明:∵EF∥AB,∴DEDA=DFDB,∵FG∥BC,∴DGDC=DFDB,∴DEDA=DGDC,∵∠EDG=∠ADC,∴△DEG∽△DAC.

已知如图在四边形abcd中,ab平行cd,ab大于cdef分别是acbd的中点求证ef等于1/

猜测问题是求证:ef=1/2*(ab+cd)如果没错可用辅助线和相似三角形来解

已知如图在四边形abcd中,ab平行cd,ab大于cdef分别是acbd的中点求证ef等于二分之一(AB-CD)

不好意思下面的全打错了,我说的四边形cd大于ab,一个意思,体会思路即可.你把一条斜着的边平移过去,搞个平行四边形+三角形出来.例如把ad平移到a和b重合的位置.和下面交点g那么abgd就是平行四边形

已知:如图,在四边形ABCD中,E,F分别为AB,CD的中点,求证EF≤1/2(AD+BC)

取AC的中点G,连接EG、FG,∵E是AB的中点,F是CD的中点,∴EG//BC且EG=1/2BC,FG//AD且FG=1/2AD,∴EF≤EG+FG=1/2(AD+BC).

已知,在四边形abcd中,ef分别是ab cd的中点,(1)求证三角形afd全等三角形ceb

【是平行四边形ABCD】证明:∵四边形ABCD是平行四边形∴AD=BC,AB=CD(平行四边形对边相等)∠B=∠D(平行四边形对角相等)∵E是AB的中点,F是CD的中点∴BE=DF∴△AFD≌△CEB

已知,在四边形ABCD中,点E,F分别在边BC,DC上,连接AE,AF,EF.

1延长CD于M,似得DM=BE,连接AM证明两三角形全等就可以得到答案了.2成立,一样的辅助线,同样的思路.先要证明AM=AE的

已知:如图,在四边形ABCD中,E,F分别是AB,CD的中点,且EF=12(AD+BC).求证:AD∥BC.

证明:取BD的中点H,连接EH、FH,∵E,F分别是AB,CD的中点,∴EH是△ABD的中位线,FH是△BCD的中位线,∴EH=12AD,EH∥AD,FH=12BC,FH∥BC,∴EF+FH=12(A

如图,已知在平行四边形ABCD中EF分别是BC、AD的中点,求证:四边形AECF是平行四边形

再问:△ABE≌△DFC()后面括号里填什么再答:边角边定理忘了怎么用字母表示了再问:��SAS��再答:Ӧ���ǵġ���