已知在四边形abcd中ef分别是adbc的中点,连接bedf
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:49:13
证明;连接ME,EN,NF,FM.点M,E分别为AD,BD的中点,则ME为三角形ABD的中位线.所以,ME∥AB;且ME=AB/2;同理:FN∥AB;且FN=AB/2;故:ME∥FN;且ME=FN.所
ME,FN分别为三角形DAB,CAB的中位线,所以ME平行且等于(1/2)AB,FN平行且等于(1/2)AB,所以ME平行且等于FN,所以MENF为平行四边形,所以MENF的对角线EF,MN互相平分.
因为:EF平行AB即:EN平行AB所以:三角形DEN相似三角形DAB因为:E是AD的中点所以:EN/AB=DE/DA=1/2所以:EN=1/2AB同理:由于F是BC的中点,在三角形ACB中,三角形CM
在△ABC中,因为E.F分别是AB、BC的中点,即EF是△ABC的中位线,所以EF//AC,EF=1/2AC,同理,HG//AC,HG=1/2AC所以EF//HG,EF=HGEFGH为平行四边形
证明:延长FE分别交BA,CD于P,Q,取AC中点M,连接EM、FM因为E是AD的中点,M是AC中点所以EM是△ABC的中位线所以EM=AB/2且ME//AB同理FM=CD/2且MF//CD由于AB=
证明:连接AE,CE∵∠BAD=∠BCD=90° 点E是BD的中点∴AE=1/2BD,CE=1/2BD(直角三角形斜边中线等于斜边的一半)∴AE=CE∵点F是AC的中点∴EF⊥A
E,F分别为AB,AD中点,那么EF就是三角形ABD的中位线,很明显EF∥BDBD又是三角形BCD上的一边,根据定理,平面外一条直线平行于平面内任意一条直线,那么这条直线就与平面平行所以EF∥平面BC
连结AD中点O.连结OE、OF,则在三角形ADC中,有OF=AC/2,同理,在三角形ABD中,有OE=BD/2,而EF≤OE+OF=(AC+BD)/2,所以2EF≤AC+BD.(等号当O、E、F成一直
取BC中点M,连接EM、FM在三角形ABC中,EM为中位线,所以EM=1/2*AC同理可得FM=1/2*BD所以EM+FM=1/2*(AC+BD)在三角形EFM中,根三角形三边关系定理可得EF
一楼的答案是不对的.应该是这样:取AD的中点,设为G,联结EG,FG那么才有一楼所说的EG=1/2AB,FG=1/2CD三角形EFG中,根据两边之差小于第三边,得FG-EGFG-EG=1/2AB-1/
四边形DEBF为菱形AD⊥BDAD‖BC所以BD⊥BC则△CBD,△ABD为直角三角形直角三角形斜边中线等于斜边一半所以DE=1/2AB=BEDF=1/2CD=BF而CD=AB所以DE=BE=BF=D
证明:∵AB=CD,AD=BC∴四边形ABCD是平行四边形∴AD//BC∴∠FDO=∠EBO,∠DFO=∠BEO∵AF=CE∴AD-AF=BC-CE即DF=BE∴⊿DFO≌⊿BEO(ASA)∴DO=B
证明:∵EF∥AB,∴DEDA=DFDB,∵FG∥BC,∴DGDC=DFDB,∴DEDA=DGDC,∵∠EDG=∠ADC,∴△DEG∽△DAC.
猜测问题是求证:ef=1/2*(ab+cd)如果没错可用辅助线和相似三角形来解
不好意思下面的全打错了,我说的四边形cd大于ab,一个意思,体会思路即可.你把一条斜着的边平移过去,搞个平行四边形+三角形出来.例如把ad平移到a和b重合的位置.和下面交点g那么abgd就是平行四边形
取AC的中点G,连接EG、FG,∵E是AB的中点,F是CD的中点,∴EG//BC且EG=1/2BC,FG//AD且FG=1/2AD,∴EF≤EG+FG=1/2(AD+BC).
【是平行四边形ABCD】证明:∵四边形ABCD是平行四边形∴AD=BC,AB=CD(平行四边形对边相等)∠B=∠D(平行四边形对角相等)∵E是AB的中点,F是CD的中点∴BE=DF∴△AFD≌△CEB
1延长CD于M,似得DM=BE,连接AM证明两三角形全等就可以得到答案了.2成立,一样的辅助线,同样的思路.先要证明AM=AE的
证明:取BD的中点H,连接EH、FH,∵E,F分别是AB,CD的中点,∴EH是△ABD的中位线,FH是△BCD的中位线,∴EH=12AD,EH∥AD,FH=12BC,FH∥BC,∴EF+FH=12(A
再问:△ABE≌△DFC()后面括号里填什么再答:边角边定理忘了怎么用字母表示了再问:��SAS��再答:Ӧ���ǵġ���