已知在三角形abc是等边三角形,被一平行于BC的矩形所截
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:39:24
因为:角ADC=角B+角BAD,角B=60又:角EDC=角ADC-角ADE=60+角BAD-60=角BAD因为:角B=角C=60所以:三角形ABD相似三角形DCE
连接BE,因为△ABC与△ADE是等边三角形,所以AB=ACAD=AE角EAB=60-角BAD=角CAD△ABE≌△ACD角ACD=角ABE=60度CD=BE因为CD=BF所以△BEF是全等三角形,则
等别是三角形ABC三个角的角平分线与角对边的交点
方法1由余弦定理,(b^2+c^2-a^2)/(2bc)+(c^2+a^2-b^2)/(2ca)+(a^2+b^2-c^2)/(2ab)=3/2,去分母得,a(b^2+c^2-a^2)+b(c^2+a
证明:由三角形正弦定理得a/sinA=b/sinB=c/sinC所以a/b=sinA/sinB=cosA/cosB得sinAcosB-cosAsinB=0所以sin(A-B)=0所以A-B=π*n(n
角CAE+角E=60度角D+角E=180度-120度=60度=>角CAE=角D而对于等边三角形有角ABD=角ECA于是三角形ABD相似于ECA=>AB/EC=BD/CA=>BD*EC=3=边长^2=>
证明:因为△ABC是等边三角形,所以∠BCA=∠BAC=60°.又因为DE平行于AC,所以∠BDE=∠BED=60°,所以∠DBE=60°.所以△BDE是等边三角形.
过点D作DG平行于BC∵AB=2BC=1CA=√3∴△ABC是Rt三角形,∠C=90°∴DG⊥AC设正三角形△DEF的边长为x∴∠DFE=60°,DE=DF=x∵∠CFE=α,∠CFE+∠DFE+∠A
人在听么?再问:什么再答: 再答:懂不懂。?再问:第四行写的是什么再答:角BAF等于二倍的角B
角E=30度,角ACB等于角CDE加角E,所以角CDE=30度,等腰再答:懂了没再问:嗯。。。大概吧,正在写再问:有点简略哈再答:我只写原理,你组织下。三角形的一个外角等于与它不相邻的两个内角的和。再
(1)在△ACE与△BCD中AC=BC∠ACE=∠DCBCE=CD∴△ACE≌△BCD中∴AE=BD∠CAE=∠CBD(2)在△ACG与△BCF中∠CAE=∠CBDAC=BC∠ACB=∠ACD(∵∠A
先证明三角形DBA相似三角形ACE设其边长为x易得1/x=x/3得x=根号3
证明:∵△ABC是等边三角形∴∠EAF=∠EBD=60°,AB=BC=AC∵AD,BE,CF分别平分∠BAC,∠ABC,∠ACB∴AF=BF=二分之一AB,AF=二分之一AC,BD=二分之一BC∴AF
证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A
1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,
∴⊿ABC是等边三角形,∴∠ACB=60º,又D为AC的中点,∴BD⊥AC,∴∠DBC=30º,又CE=CD,∴∠CDE=∠E,又∠CDE+∠E=60º,∴∠E=30
解题思路:考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.解题过程:附件最终答案:略