已知在三角形abc是等边三角形,被一平行于BC的矩形所截

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:39:24
已知在三角形abc是等边三角形,被一平行于BC的矩形所截
已知,三角形ABC是等边三角形,点D,E分别在边BC,AC上,角ADE=60度.求证:三角形ABD相似与三角形DCE

因为:角ADC=角B+角BAD,角B=60又:角EDC=角ADC-角ADE=60+角BAD-60=角BAD因为:角B=角C=60所以:三角形ABD相似三角形DCE

已知三角形ABC与三角形ADE都是等边三角形,CD=BF,求证:四边形CDEF是平行四边形

连接BE,因为△ABC与△ADE是等边三角形,所以AB=ACAD=AE角EAB=60-角BAD=角CAD△ABE≌△ACD角ACD=角ABE=60度CD=BE因为CD=BF所以△BEF是全等三角形,则

三角形ABC中,已知cosA+cosB+cosC=3/2,用向量证明三角形ABC是等边三角形

方法1由余弦定理,(b^2+c^2-a^2)/(2bc)+(c^2+a^2-b^2)/(2ca)+(a^2+b^2-c^2)/(2ab)=3/2,去分母得,a(b^2+c^2-a^2)+b(c^2+a

在△ABC中,已知a/cosA=b/cosB=c/cosC,求证这个三角形是等边三角形

证明:由三角形正弦定理得a/sinA=b/sinB=c/sinC所以a/b=sinA/sinB=cosA/cosB得sinAcosB-cosAsinB=0所以sin(A-B)=0所以A-B=π*n(n

三角形ABC是等边三角形,D,B,C,E在一条直线上,角DAE=120度,已知BD=1,CE=3.求等边三角形的边长

角CAE+角E=60度角D+角E=180度-120度=60度=>角CAE=角D而对于等边三角形有角ABD=角ECA于是三角形ABD相似于ECA=>AB/EC=BD/CA=>BD*EC=3=边长^2=>

如图,已知三角形ABC是等边三角形,点D在BC上,点E在边AB上,DE平行于AC,三角形BDE是等边三角形吗?试说明理由

证明:因为△ABC是等边三角形,所以∠BCA=∠BAC=60°.又因为DE平行于AC,所以∠BDE=∠BED=60°,所以∠DBE=60°.所以△BDE是等边三角形.

三角形ABC中,已知:AB=2,BC=1,CA=√3,分别在边AB,BC,CA上取点DEF,使三角形DEF是等边三角形,

过点D作DG平行于BC∵AB=2BC=1CA=√3∴△ABC是Rt三角形,∠C=90°∴DG⊥AC设正三角形△DEF的边长为x∴∠DFE=60°,DE=DF=x∵∠CFE=α,∠CFE+∠DFE+∠A

已知如图,在菱形ABCD中,∠BAD=2∠B求证三角形ABC是等边三角形

人在听么?再问:什么再答: 再答:懂不懂。?再问:第四行写的是什么再答:角BAF等于二倍的角B

如图,已知三角形ABC是等边三角形,BD平分角ABC,BD=DE,那么三角形CDE是等腰三角形,为什么?

角E=30度,角ACB等于角CDE加角E,所以角CDE=30度,等腰再答:懂了没再问:嗯。。。大概吧,正在写再问:有点简略哈再答:我只写原理,你组织下。三角形的一个外角等于与它不相邻的两个内角的和。再

已知三角形ABC和三角形DCB均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD

(1)在△ACE与△BCD中AC=BC∠ACE=∠DCBCE=CD∴△ACE≌△BCD中∴AE=BD∠CAE=∠CBD(2)在△ACG与△BCF中∠CAE=∠CBDAC=BC∠ACB=∠ACD(∵∠A

三角形ABC是等边三角形 D,B,C,E在一条直线上,角DAE=120度 已知BD=1 CE=3求等边三角形的边长

先证明三角形DBA相似三角形ACE设其边长为x易得1/x=x/3得x=根号3

已知:如图,ad、be、cf是等边三角形abc的角平分线 求证:三角形def是等边三角形

证明:∵△ABC是等边三角形∴∠EAF=∠EBD=60°,AB=BC=AC∵AD,BE,CF分别平分∠BAC,∠ABC,∠ACB∴AF=BF=二分之一AB,AF=二分之一AC,BD=二分之一BC∴AF

如图,已知在三角形ABC中AD=BE=CF,且△DEF是等边三角形,求证:△ABC是等边三角形

证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A

已知三角形ABC是等边三角形,D,E分别是BC,AC上的点,且BD=CE,以AD为边在AC一侧作等边三角形ADF.

1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,

如图中三角形abc是等边三角形

∴⊿ABC是等边三角形,∴∠ACB=60º,又D为AC的中点,∴BD⊥AC,∴∠DBC=30º,又CE=CD,∴∠CDE=∠E,又∠CDE+∠E=60º,∴∠E=30&#

已知三角形BEC是等边三角形,

解题思路:考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.解题过程:附件最终答案:略