已知在(3根号小.2) 的展开式中第6项
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:41:38
前三项系数为1,n/2,n(n-1)/8前三项的系数成等差数列所以n(n-1)/8-n/2=n/2-1n=8或n=1(舍去)令x=1,二项式系数的和=(1+1/2)^8=6561/25604常数项=C
标准答案为70x^14/3因为各项系数和等于256,所以当x为1的时候,2^n=256则n=8,T5=C下8上4x^(-4/3)x^6=70x^14/3
前三项系数成等差数列,即2*n*(1/2)=n(n-1)/2*(1/2)^2+1得n=1(舍去),n=81.含x的5次方的项是T3=C(8,2)*x^6*1/(2√x)^2=7x^52.系数最大的项有
由于没有找到笔,全部心算出结果,仅供参考!
(1)(√x+(1/³√x))ⁿ展开式的二项式系数之和为2ⁿ(a+b)²ⁿ展开式的二次项系数之和为2²ⁿ∴2²&
这是二项式系数问题啊,-c8^3=-56
C(n,8)(x^2/2)^(n-8)(-x^(-1/2))^8=C(n,8)(1/2)^(n-8)x^(2n-16-4),2n-20=0,n=10-------------------C(10,k)
题目有歧义,能再加几个括号不再问:哪有歧义???再答:1/2x^2的^2在哪谁上?再问:1/2和x是可开的,在x上
展开式前三项系数分别为:Cn0,Cn1*(-1/2),Cn2*1/4化简:1,-n/2,n(n-1)/8绝对值成等差数列,即:1+n(n-1)/8=-n解得n=1(舍去)或8第四项为Cn3(x)^(5
{√x+1/[2x^(1/4)]}^n的展开式中,T=C(n,r)(√x)^(n-r)*[(1/2)x^(-1/4)]^r=C(n,r)*(1/2)^r*x^(n/2-3r/4),(1)前三项系数成等
(x)^(1/4)=y原式=(y^2+1/2y)^n展开式的前三项:y^(2n)+ny^(2n-2)(1/2y)+n(n-1)y(^2n-4)(1/2^2y^2)系数分别是:1,n/2,n(n-1)/
前三项系数分别为1,-(1/2)×C(n,1),(1/4)×C(n,2)它们的绝对值为1,n/2,n(n-1)/8由条件,得1+n(n-1)/8=n,整理得n²-9n+8=0解得n=8或n=
用二项式定理怎么有x^3只有x*x*(x^1/2)*x^(1/2)=x^3所以系数为2*2*(4C2)=24
二项展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和.2^(n-1)=2^(2n-1)-120解得n=16.再用组合数的公式算第三项.再问:我没有想明白一式怎么可能等于二,虽然是赋值法的结论
(2^2n)-2^n=56,解得:2^n=8,n=3(1):C(3,2)X.(1/X)^2=3/X(2):C(6,3)Y^3(根号Y)^3=20Y^(9/2)
题目有问题(√x-1/x)^n第2项T2=C(n,1)*(√x)^(n-1)*(-1/x)第3项T3=C(n,2)*(√x)^(n-2)*(-1/x)^2第2项与第3项的二项式系数之和=n(n-1)/
展开式中二项式系数和为512,即有2^n=512,得到n=9T(r+1)=C9(r)*[x^1/2]^(9-r)*(2/x)^r=C9(r)x^(9/2-r/2-r)*2^r令9/2-r/2-r=0,
2^2n-2^n=992(2^n+31)(2^n-32)=02^n=32n=5(2X-1/X)^10的展开式中,二项式系数最大的项为第6项C(10,5)(2X)^5(-1/X)^5
系数为C(k,n)/2^k=n!/k!(n-k)!*2^(-k)前三项为1,n/2,n(n-1)/8前三项为等差得到1+n(n-1)/8=nn^2-9n+8=0n=1或者8如果n=1,没有前三项,所以
第五项本来应该为C(n,5)*x^5*(-3/2√x)^(n-5)其中x的指数应该为5-(n-5)/2=0所以n=15;所以所有项的系数和为取x=1的结果,所以有(-1/2)^15=-1/2^15