已知圆o的半径为1,ab.ac是圆o的弦,ab等于根号三,ac等于根号2,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:19:17
已知圆o的半径为1,ab.ac是圆o的弦,ab等于根号三,ac等于根号2,
已知:⊙O半径OA=1,弦AB、AC长分别为2

如图,过点O作OE⊥AB,OF⊥AC,垂足分别为E,F,∵AB=2,AC=3,∴由垂径定理得,AE=22,AF=32,∵OA=1,∴由勾股定理得OE=22,OF=12,∴∠BAO=45°,∴OF=12

已知矩形ABCD中,AB=2,BC=2根号3,O是AC上一点,AO=m,且圆O的半径长为1,求(1)线段AB与圆O没有公

过点O作OE⊥AB∵矩形ABCD∴BC⊥AB∵AB=2,BC=2√3∴AC=√(AB²+BC²)=√(4+12)=4∵OE⊥AB∴OE∥BC∴OE/AO=BC/AC∵AO=m∴OE

已知AB是圆O的直径,弧AC的度数为60°,如果圆O的半径为2cm,那么弦AC的长为?

OA=OC=半径,角AOC=60°三角形OAC就是等边三角形AC弦=2

1.已知AB为圆点0的直径,AC和AD为弦,AB=2,AC=根号2,AD=1,求∠CAD的度数2.已知圆点O的半径为2c

用cad解决,很快的,NO.1:做AB为直径的圆,然后以A点做AC,AD为半径的圆,连接两弦,角度尺寸标注.OKNO.2:做一条直线,以这条直线做圆周角为60度的弧,再以这条弧三点做个圆,然后用SC比

已知,如图,在RT三角形ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC为半径的圆与AC、AB分

BD与圆O相切证明:连结ODOA=OD∴∠A=∠ODA∵∠CBD=∠A∴∠ODA=∠CBD∵∠CDB+∠CBD=90°∴∠CDB+∠ODA=90°∴∠ODB=90°∵OD是圆O的半径∴DB与圆O相切2

已知圆O的半径为1cm,弦AB=根号3,AC=根号2,求角BAC的度数.

连接OA、OB、OC∵AB=根号3,∴∠OAB=30°∵AB=根号2∴∠OAC=45°当O在∠BAC内部时,∠BAC=45+30=75°当O在∠BAC外部时,∠BAC=45-30=15°

已知矩形ABCD中AB=2,BC=2根号三,O是AC上一点,AO=m,且○O的半径长为1

找临界状态根据角的关系(∠ACB=30°)是与AD相切的状态和与BC相切的状态再根据角的关系发现是2个公共点舍因为O是AC上一点所以O点可以在矩形外面所以m=1或5去、、、、我怎么像自己逗自己玩似的呢

已知矩形ABCD中,AB=2,BC=2根号3,O是AC上一点,AO=m,且圆的半径为1求1线段AB与圆O没有公共点时m的

过点O作OE⊥AB∵四边形ABCD是矩形∴BC⊥AB∵AB=2,BC=2√3∴AC=√(AB^2+BC^2)=√(4+12)=4∵OE⊥AB∴OE∥BC∴OE/AO=BC/AC∵AO=m∴OE/m=2

已知矩形ABCD中,AB=2,BC=2根号3,O是AC上一点,OA=m,且圆O的半径为1

1:AB=2,BC=2根号3,所以角BAC是60度,AC=4,没有公共点,就是O到AB的距离大于1,所以OA>2根号3/3.应该在AC上,所以OA还要不大于4.2:圆与AB相切时,O到AB距离为1,所

已知矩形ABCD中,AB=2,BC=2根号3,O是AC上一点,OA=m,且圆O的半径为1 1线段AB与圆O没有公共点时,

AB=2,BC=2根号3,所以角BAC是60度,AC=4,没有公共点,就是O到AB的距离大于1,所以OA>2根号3/3.应该在AC上,所以OA还要不大于4.

如图,已知圆O的半径为4,CD是圆O的直径,AC为圆O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC

(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥

已知圆O的半径为4,弦AB的长等于半径,则圆心O到AB的距离

运用弦于圆心的关系,过圆心做弦的垂线,求的O到AB的距离为2倍的根号3

已知半径为1的圆o中两条弦AB=根号2,AC=根号3,则BC等于

三角形ABC中,H是A到BC的高,则外接圆半径为r,存在以下公式:2r=AB*AC/HH=AB*AC/(2r)=根号3*根号2/2=根号6/2所以BC=根号(AC^2-H^2)+根号(AB^2-H^2

已知圆O半径为1,弦AB、AC长为根号2,根号3,则角BAC的度数为?

连OA、OBOA=OB=1so,OA:OB:AB=1:1:根号2so,∠OAB=45°作OD⊥于ACso,AD=二分之根号3因为OA=1所以∠OAD等于30°so,∠CAB=45°+30°=75°

已知⊙O的半径OA=1,弦AB、AC的长分别是2

分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,根据垂径定理得AE=12AC=32,AD=12AB=22,∴sin∠AOE=AEAO=321=32,sin∠AOD=ADOA=

已知圆O中,弦AB垂直于CD于E,若圆O的半径为R,求证:AC²+BD²=4²

作直径AF,则有:AF=2R;连接AD、CF,则有:∠ADC=∠AFC;可得:∠BAD=90°-∠ADC=90°-∠AFC=∠CAF;则有:弧BD=弧CF,可得:BD=CF,所以,AC²+B