已知圆o1和圆o2相交于ab两点,且ab=6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:17:51
1.因为AB垂直CD所以角ABC=角ABD=直角,直角所对弦为直径.2.连接CE与DF,角EBC与角DBF为对顶角所以相等,由同一圆弧所对圆周角相等可知,角EBC=角EAC,角FBD=角FAD所以角C
(1)证:连接BO2则BO2=r=1/2MO2可知BO2垂直于BM可证MB是圆O2的切线(2)r平方-(r/2)平方=3r=2
因为AC为圆O2的切线,所以,∠CAB=∠AFB又因为∠BAC=∠CEB所以∠CEB=∠AFB所以CE∥AF再问:为什么∠CAB=∠AFB用做什么辅助线吗再答:弦切角等于所含弧上的圆周角
连接AB,在⊙O2中,∵AC是直径∴∠ABC=90°,∠ABE=90°在⊙O1中,连接AE和ED∵∠ABE=90°∴AE是直径,O1点在AE上,∠EDA=90°连接CO1,∵O1点在⊙O2上∴∠CO1
不是“圆O1在圆O2上”,应该是“O1点在圆O2上”,改正后证明如下.连接AB,在⊙O2中,∵AC是直径,∴∠ABC=90°,∠ABE=90°,在⊙O1中,连接AE和ED,∵∠ABE=90°,∴AE是
(1)∠CAD+∠CBD=180°.证明:作公切线MN交CD于M,∵CD是⊙O1和⊙O2的公切线∴∠MDA=∠DBA∠MCA=∠CBM又∵∠MDA+∠MCA+∠DAC=180°∠DBM+∠MBC=∠D
连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径,∠AO1D=90°,∵AO1=O1C,DO1⊥AC,∴DO1是AC的垂直
证明:∵AB⊥CD∴AC和AD都是直径∵∠E=∠C,∠D=∠F∴△AEF∽△ACD∴AE/AF=AC/AD因为AC,AD为两个圆的直径,是定值∴AE/AF是一个常数
证明:(1)连接AC,AD∵B在⊙O1上且AB⊥BC∴∠ABC=90°∴AC是⊙O1的直径同理可得AD是⊙O2的直径(2)∠1=∠2∠1=∠3∠2=∠4∴∠3=∠4∴∠3+∠5=∠4+∠5∴∠CAD=
对这个问题,首先要说明弦AC,弦AD分别是两圆的直径(1)就是要证明AE:AF=AC:AD,方法证明三角形ACE和三角形ADF(2)要充分利用直觉,易发现三角形AEF面积最大时就是ACD说明方法:分别
不好意思,昨天我看错题目了,回答错了.但是,我现在又发现,题目还是有问题.因为我可以举出两个例子,分别说明AE既可以大于AB,也可以小于.大于的例子很好想,你自己也可以画的出来.小于的情况:如果圆2是
证明:(1)∵CD⊥AB∴∠ABC=90º∴AC是圆O1的直径【直径所对的圆周角为直角】(2)∵CD⊥AB∴∠ABD=90º∴AD为圆O2的直径∵AC=AD∴①O1C=O2B【=&
这个简单,画个图根据勾股定理就可得长为21cm
因为是等圆,所以他们的半径相等,链接AO1,BO1,AO2,BO2,可得AO1BO2为菱形,(因为四条边都是半径都相等),所以他的对角线互相垂直(菱形的性质),可知ABCD的对角线也垂直.所以也是菱形
画出2个圆,连接圆心和交点,成三角形后你就会做了再问:具体过程再答:作图两圆相交,标出ab两点,两点和圆心连接,弦长已知,半径已知,弦所对应圆心角则可知。剩下的会吧。
1)联结AB,BN∠BCD=∠BAD(都是弧BD所对的圆周角)=∠PNB(都是弧BP所对的圆周角)加上∠CPN=∠NPB所以△PCN∽△PNB所以PC/PN=PN/PBPN=√(PB(PB+BC))=
连接AB,根据圆的内接四边形的性质,易证得∠F+∠E=180°,因此CE∥DF,即四边形CDFE是平行四边形;由平行四边形的性质即可证得CE=DF.连接AB;∵∠CAB=∠F,CD∥EF;∴∠C+∠E
先画图,在⊙O2中画出正三角形,一边为AB以⊙O2的圆心分别连接OA,OB,又因为AB是内接正三角的边,所以对应圆心角为120度,AB又知道是4,就可以算出⊙O2圆心到AB的垂直距离,为(2根号3)/
连接圆心交AB于C,AC=CB=1/2AB=8cmO1O2=O1C+O2C=√r1^2-AC^2±√r2^2-AC^2=15正负6=21cm或者9cm
(1)O2在⊙O1上,证明:∵⊙O2过点O1,∴O1O2=r,又∵⊙O1的半径也是r,∴点O2在⊙O1上;(2)△NAB是等边三角形,证明:∵MN⊥AB,∴∠NMB=∠NMA=90度,∴BN是⊙O2的