已知圆O1与圆O2是等圆,其半径分别为r1,r2,r1,r2是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:58:45
已知圆O1与圆O2是等圆,其半径分别为r1,r2,r1,r2是
已知圆心O1与O2是等圆,其半径分别为r1,r2,且r,1,r2,是关于x的方程4x的平凡+ax+1=0的两根,求a的值

因为圆O1与O2是等圆,其半径分别为r1,r2,所以r1=r2所以关于x的方程4x^2+ax+1=0的两根相等所以a^2-4*4*1=0所以a=±4供参考!JSWYC

已知圆O1与圆O2外切于点A,AB是圆O1的直径,BD切与圆O2与点D

证:∵AB为直径∴∠ACB=90º又∠BDO₂=90º∴O₂D‖AC∴AB/AC=BO₂/O₂D又∵O₂D为小圆半径=A

已知圆O1与圆O2相交于A和B两点,圆O1的弦AC切圆O2于A,EF是过B点的割线,交圆O1于E,交圆O2于F.求证CE

因为AC为圆O2的切线,所以,∠CAB=∠AFB又因为∠BAC=∠CEB所以∠CEB=∠AFB所以CE∥AF再问:为什么∠CAB=∠AFB用做什么辅助线吗再答:弦切角等于所含弧上的圆周角

如图,圆O1、圆O2外切于点P,过点P的直线分别交圆O1和圆O2于点A、B.已知圆O1与圆O2的面积比是9:4,求AP:

如果是选择或者填空,教你个方法,你连接O1PO2,这条直线也是符合要求的APB.易得两圆半径之比为3:2所以结果为3:2如果是证明题,可以稍微花几步证明O1P:PO2=AP:BP(相似三角形)

如图+已知圆O1与圆O2相交于A,B两点,圆O1在圆O2上,AC是圆O1的直径,直线CB与圆O2相交于点D,连接AD

1,AC是圆O1的直径,所以∠ABC=90度,所以∠ABD=90度,即,AD是圆O2的直径2,AD是圆O2的直径,所以∠AO1D=90°,因为AO1=O1C,DO1⊥AC,所以DO1是AC的垂直平分线

如图,已知圆O1与圆O2相交于A丶B两点,O1在圆O2上,AC是圆O1的直径,直线CB与圆O2相交于点D,连接AD.

证明:1、连接AB在圆O1中,AC是直径∴∠ABC=90°∴∠ABD=90°∴AD是圆O2的直径2、连接DO1(画图时忘记连了,自己连接)∵AD是圆O2的直径,O1在圆O2上∴∠AO1D=90°∴DO

如图所示,已知圆O1和圆O2相交于A,B两点,圆O1在圆O2,AC是圆O1的直径,CB与圆O2相交于点D,连接AD.

连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径,∠AO1D=90°,∵AO1=O1C,DO1⊥AC,∴DO1是AC的垂直

已知等圆O1,O2的半径.急

考虑2种情况1.如果大圆和2个小圆都内切那么大圆的直径12厘米而连心线+2*小圆半径=16厘米二者不相等,所以做不到.2.大圆和2个小圆都外切那么就看三个圆心连线是否能构成三角形2个小圆连心线12厘米

如图,已知圆O1与圆O2相交于点A、B,O1在O2上,AC是圆O1的直径,直线CB

证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=

已知圆o1与o2内切于点p,o1的弦AB交o2与C、D两点.

证明:作两圆的公切线PM则∠MPE=∠PCE=∠A∵∠PEC=∠PDA∴△PAD∽△PCE∴PA/PC=PD/PE∴PA*PE=PC*PD再问:嗯,公切线?再答:两个圆的公共切线再问:切线画在哪里?再

已知:如图,两个半径长为r的等圆⊙O1和⊙O2外切与点P,A是⊙O1上的一点,BP⊥AP,BP交⊙O2于点B.求证:AB

无图依然行!证明:等圆⊙O1和⊙O2外切与点P,所以O1,O2和P点在同一条直线,设此直线交⊙O1于点T,交⊙O2于点S联结AT,BS,由题意知:∠APB=90°,所以∠APT+∠BPS=90°,又因

如图,已知圆O1与圆O2相交于点A,B,点O1在圆O2上,AC是圆O1的直径,CB的延长线与圆O2相交于点D,连接AD.

证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=

已知圆O1与○2是等圆,点M是线段O1O2的中点,多点M作直线交○O1于点A、B,交○O2于点C、D.求证:AB=CD

连结O1A,O2D,分别取弦AB中点P,弦CD中点Q,连结O1P,O2Q则由垂径定理可得:O1P⊥AB,O2Q⊥CD因为O1M=MO2,∠O1MA=∠O2MD(对顶角相等)所以:Rt△O1PM≌Rt△

已知圆O1与圆O2相切,O1O2=5,则圆O2的半径是?

没有其他已知条件么?——如果没有其他条件的话,O2的半径是(5减去O1的半径)或(O1的半径减去5)或(O1的半径加上5).

已知圆O1与圆O2是等圆,其半径分别为r1,r2,r1,r2是关于x的方程4x2+ax+1=0的两根,求a的值

等圆则半径相等,即r1=r2,即一元二次方程有两个相等正根,△=a^2-16=0r1+r2=-a/4>0r1r2=1/4>0所以a=-4

已知圆O1与圆O2相交于A、B两点,且点O2在圆O1上,AD是圆O2的直径,连接DB并延长交圆O1于点C.

连接AB,AD是圆O2的直径,AB⊥DB,AB⊥BC,连接AC,故AC是圆O1的直径,点O2在圆O1上,因此CO2⊥AO2,CO2⊥AD.

如图,已知:⊙O1与⊙O2是等圆,它们相交于A、B两点,O2在⊙O1上,AC是⊙O2的直径,直线CB交⊙O1于D,E为A

证明:(1)∵AC是⊙O2的直径,AB⊥DC,∴∠ABD=90°,∴AD是⊙O1的直径.(2)证法一:∵AD是⊙O1的直径,∴O1为AD中点.连接O1O2;∵点O2在⊙O1上,⊙O1与⊙O2的半径相等

(2005•盐城)如图,已知:⊙O1与⊙O2是等圆,它们相交于A、B两点,O2在⊙O1上,AC是⊙O2的直径,直线CB交

证明:(1)∵AC是⊙O2的直径,AB⊥DC,∴∠ABD=90°,∴AD是⊙O1的直径.(2)证法一:∵AD是⊙O1的直径,∴O1为AD中点.连接O1O2;∵点O2在⊙O1上,⊙O1与⊙O2的半径相等

如图,已知圆O1与圆O2相交于A,B两点,圆O2过O1,且AB是圆O2的直径,若圆O1的半径为4,求图中阴影部分的面积

如图?你的图太坑人!大圆半径R是4,小圆半径r满足2r²=R²,r=2(根号2)阴影部分面积=小圆的一半减去(大圆的四分之一减去三角形ABO1)=(1/2)π[2(根号2)]

已知:⊙O1与⊙O2相交于A、B两点,O1在⊙O2上,AC是圆O1的切线,交圆O2与C,BO1的延长线与CA的延长线交与

 这个问题缺少条件,无法证明 只能得出△PBC是直角三角形的结论 理由很简单: 连接O1A 因为AC是圆O1的切线 所以O1A⊥AC,&nb