已知圆O1上一点P与双曲线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:08:55
已知圆O1上一点P与双曲线
已知圆X^2 +(Y-2)^2 =1.一点P与双曲线X^2 -Y^2 =1上一点Q,求P.Q两点距离的最小值

由于圆外一点到圆的最小距离是该点到圆心的距离减去半径,所以双曲线x²-y²=1上一点Q到圆的最小距离是点Q到圆心的距离减去圆的半径.圆x²+(y-2)²=1的圆

已知:如图,圆O1与圆O2外切于点P,经过圆O1上一点A作圆O1的切线交圆O2于B、C两点,直线AP交圆O2于点D,连接

(1)证明:过点P作两圆的内公切线EP交AB于点F,∵FE、CA都与圆O1相切,∴FP=FA,∴∠FAP=∠FPA;∵∠FPA=∠EPD=∠DCP,∴∠FAP=∠DCP;∵∠PDC=∠CDA,∴△CD

(1997•南京)已知:如图,⊙O1与⊙O2外切于点P,A为⊙O1上一点,直线AC切⊙O2于点C,且交⊙O1于点B,AP

(1)证明:如图1,过点P作两圆的公切线PE,交BC于点E,∵⊙O1与⊙O2外切于点P,直线AC切⊙O2于点C,∴EP=EC,∠PAB=∠BPE,∴∠ECP=∠EPC,又∵∠PAC+∠ACP=∠CPD

如图,已知圆O1,圆O2 外切于P,过圆O1上一点B作圆O1切线交圆O2于C、D,直线PB交圆O2

过点P作两圆的公切线交BD于E.∵A、P、C、D共圆,∴∠APD=∠ACD,∴∠BPD=∠ACB.∵PE、BE分别切⊙O1于P、E,∴∠EPB=∠ABD,∴∠BPD=∠DPE+∠ABD,∴∠ACB=∠

已知:如图⊙O1与⊙O2相交于A、B,P是⊙O1上一点,连接PA、PB并延长,分别交⊙O2于C、D,点E是CD上的任意一

证明:连接AB、AG.则∠ABP=∠AGP,∠ABP=∠C,∵∠AGP=∠C,∴∠1=∠1,∴△APG∽△HPC.∵PAPG=PHPC,∴PA•PC=PG•PH.∵PA•PC=PF•PE,∴PF•PE

已知圆O:x^2+(y-2)^2=1上一点P与双曲线x^2-y^2=1上一点Q,求P、Q两点的最小距离.

由于圆外一点到圆的最小距离是该点到圆心的距离减去半径,所以双曲线x²-y²=1上一点Q到圆的最小距离是点Q到圆心的距离减去圆的半径.圆x²+(y-2)²=1的圆

已知圆O1与圆O2相交于A、B两点,点O1在圆O2上,C为O2上一点(不与A,B,O1重合),直线CB与圆O1交于另一点

根据C所外位置情况可分为两种情况,C在弧O₁A和  弧O₁B证明:(1)C在弧O₁A上时廷长O₁C交AD于F点;连接AO₁

圆几何题一道如图,已知圆O1(半径长R)与圆O2(半径长r)相切于点A,过圆外一点P分别作圆O1与圆O2的切线PB、PC

易知△PO1B与△PO2C相似所以PO1/PO2=BO1/CO2=O1A/O2A从而PA为∠O1PO2的平分线,可得∠BPA=∠CPA而∠O1AD=∠O2AE=∠AEO2,可得∠O2EP=∠O1AP因

已知圆o1与o2内切于点p,o1的弦AB交o2与C、D两点.

证明:作两圆的公切线PM则∠MPE=∠PCE=∠A∵∠PEC=∠PDA∴△PAD∽△PCE∴PA/PC=PD/PE∴PA*PE=PC*PD再问:嗯,公切线?再答:两个圆的公共切线再问:切线画在哪里?再

已知:如图,两个半径长为r的等圆⊙O1和⊙O2外切与点P,A是⊙O1上的一点,BP⊥AP,BP交⊙O2于点B.求证:AB

无图依然行!证明:等圆⊙O1和⊙O2外切与点P,所以O1,O2和P点在同一条直线,设此直线交⊙O1于点T,交⊙O2于点S联结AT,BS,由题意知:∠APB=90°,所以∠APT+∠BPS=90°,又因

已知圆O1,圆O2相交于AB两点,P为圆O1上一点,PB延长线交圆O2于C,PA交圆O2于点D,CD延长线交圆O1于点N

1)联结AB,BN∠BCD=∠BAD(都是弧BD所对的圆周角)=∠PNB(都是弧BP所对的圆周角)加上∠CPN=∠NPB所以△PCN∽△PNB所以PC/PN=PN/PBPN=√(PB(PB+BC))=

已知圆O1与圆O2相交于A,B 圆O2的圆心在圆O1上 P为圆O1上一点 PA的延长线交圆O2于D点 PB交圆O2于C点

解题要领:①解答数学图形题,首先正确吃透题意,快速理解或画出图形;②准确的图形能帮助、引导自己快速形成思路;③这类题的解法,一般采用“倒推法”.证明思路:采用“倒推法”(1)要想证明出PA:AD=PC

如图,⊙O1与⊙O2相交,P是⊙O1上的一点,过P点作两圆的切线,则切线的条数可能是(  )

∵⊙O1与⊙O2相交,若P是在⊙O2内部,则只能作⊙O1的1条切线,若P是两圆的交点,则能分别作两圆的切线各1条,则此时切线的条数是2条;若P不在⊙O2内部,也不是两圆的交点,则可作⊙O1的切线1条,

已知双曲线x^2-y^2=4上一点P,且点P与俩焦点的连线互相垂直,求点P坐标

此题实际上是圆与双曲线的交点问题.圆以焦距为直径,以原点为圆心,则圆的方程为:x^2+y^2=8,联立双曲线方程X^2-y^2=4,解得,X=土根号3,y=土根号2,p点有4个,分别为…此题归结为焦点

已知:如图圆o1与圆2相交于A,B两点,C为圆O1上一点,AC交圆O2于点D,过B作直线EF交O1,O2于E,F.试说明

连两圆的公共弦AB角CEF=角CAB(同弧或等弧所对圆周角相等:弧BC)角CAB=角BFD(同弧或等弧所对圆周角相等:弧BD)所以角CEF=角BFD故:EC‖DF(内错角相等,二直线平行)

已知:如图,O1与O2外切于点P,经过O1上一点A作O1的切线交O2于B、C两点,直线AP交O2于点D,连接DC、PC.

证明:过点P作两圆的内公切线EP交AB于点F,∵FE、CA都与圆O1相切,∴EP=FA,∴∠FAP=∠FPA;∵∠FPA=∠EPA=∠DCP,∴∠FAP=∠DCP;∵∠PDC=∠CDA,∴△CDP∽△