已知圆O1上一点P与双曲线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:08:55
由于圆外一点到圆的最小距离是该点到圆心的距离减去半径,所以双曲线x²-y²=1上一点Q到圆的最小距离是点Q到圆心的距离减去圆的半径.圆x²+(y-2)²=1的圆
(1)证明:过点P作两圆的内公切线EP交AB于点F,∵FE、CA都与圆O1相切,∴FP=FA,∴∠FAP=∠FPA;∵∠FPA=∠EPD=∠DCP,∴∠FAP=∠DCP;∵∠PDC=∠CDA,∴△CD
(1)证明:如图1,过点P作两圆的公切线PE,交BC于点E,∵⊙O1与⊙O2外切于点P,直线AC切⊙O2于点C,∴EP=EC,∠PAB=∠BPE,∴∠ECP=∠EPC,又∵∠PAC+∠ACP=∠CPD
过点P作两圆的公切线交BD于E.∵A、P、C、D共圆,∴∠APD=∠ACD,∴∠BPD=∠ACB.∵PE、BE分别切⊙O1于P、E,∴∠EPB=∠ABD,∴∠BPD=∠DPE+∠ABD,∴∠ACB=∠
证明:连接AB、AG.则∠ABP=∠AGP,∠ABP=∠C,∵∠AGP=∠C,∴∠1=∠1,∴△APG∽△HPC.∵PAPG=PHPC,∴PA•PC=PG•PH.∵PA•PC=PF•PE,∴PF•PE
由于圆外一点到圆的最小距离是该点到圆心的距离减去半径,所以双曲线x²-y²=1上一点Q到圆的最小距离是点Q到圆心的距离减去圆的半径.圆x²+(y-2)²=1的圆
根据C所外位置情况可分为两种情况,C在弧O₁A和 弧O₁B证明:(1)C在弧O₁A上时廷长O₁C交AD于F点;连接AO₁
易知△PO1B与△PO2C相似所以PO1/PO2=BO1/CO2=O1A/O2A从而PA为∠O1PO2的平分线,可得∠BPA=∠CPA而∠O1AD=∠O2AE=∠AEO2,可得∠O2EP=∠O1AP因
a=2c=3b^=5,焦点在y轴上,双曲线方程:y^2/4-x^2/5=1
证明:作两圆的公切线PM则∠MPE=∠PCE=∠A∵∠PEC=∠PDA∴△PAD∽△PCE∴PA/PC=PD/PE∴PA*PE=PC*PD再问:嗯,公切线?再答:两个圆的公共切线再问:切线画在哪里?再
无图依然行!证明:等圆⊙O1和⊙O2外切与点P,所以O1,O2和P点在同一条直线,设此直线交⊙O1于点T,交⊙O2于点S联结AT,BS,由题意知:∠APB=90°,所以∠APT+∠BPS=90°,又因
1)联结AB,BN∠BCD=∠BAD(都是弧BD所对的圆周角)=∠PNB(都是弧BP所对的圆周角)加上∠CPN=∠NPB所以△PCN∽△PNB所以PC/PN=PN/PBPN=√(PB(PB+BC))=
解题要领:①解答数学图形题,首先正确吃透题意,快速理解或画出图形;②准确的图形能帮助、引导自己快速形成思路;③这类题的解法,一般采用“倒推法”.证明思路:采用“倒推法”(1)要想证明出PA:AD=PC
∵⊙O1与⊙O2相交,若P是在⊙O2内部,则只能作⊙O1的1条切线,若P是两圆的交点,则能分别作两圆的切线各1条,则此时切线的条数是2条;若P不在⊙O2内部,也不是两圆的交点,则可作⊙O1的切线1条,
此题实际上是圆与双曲线的交点问题.圆以焦距为直径,以原点为圆心,则圆的方程为:x^2+y^2=8,联立双曲线方程X^2-y^2=4,解得,X=土根号3,y=土根号2,p点有4个,分别为…此题归结为焦点
连两圆的公共弦AB角CEF=角CAB(同弧或等弧所对圆周角相等:弧BC)角CAB=角BFD(同弧或等弧所对圆周角相等:弧BD)所以角CEF=角BFD故:EC‖DF(内错角相等,二直线平行)
证明:过点P作两圆的内公切线EP交AB于点F,∵FE、CA都与圆O1相切,∴EP=FA,∴∠FAP=∠FPA;∵∠FPA=∠EPA=∠DCP,∴∠FAP=∠DCP;∵∠PDC=∠CDA,∴△CDP∽△
证明:由题得CP*PD=PF*PE同减去PE*PD得CE*PD=PE*DF∴CE/PE=DF/PD