已知圆o.:x2. y2=16上任意一点p,过p作x轴的垂线段pa,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:54:04
已知圆o.:x2. y2=16上任意一点p,过p作x轴的垂线段pa,
已知椭圆Rx2/a2+y2/b2=1的右焦点F,y轴右侧的点A在椭圆E上运动,直线MA与圆O,x2+y2=b2相切于点M

(1)MA是圆O的切线,过圆O上点M(x0,y0)于是MA:x0x+y0y=b²(2)设点A(x1,y1)则|AF|=|(a²/c)-x1|e=a-ex1|AM|=√[(x1-x0

如图,已知圆O:x2+y2=2交x轴于A,B两点,点P(-1,1)为圆O上一点.曲线C是以AB为长轴,离心率为22的椭圆

(1)由题意,得a=2,e=22,∴c=1,∴b2=1.所以椭圆C的标准方程为x22+y2=1.(6分)(2)∵P(-1,1),F(1,0),∴kPF=−12,∴kOQ=2.所以直线OQ的方程为y=2

问一道高中解析几何已知椭圆 x2/a2 + y2/b2 =1,圆O:x2+y2=b2 ,过椭圆上一点P引圆O的两条切线,

再问:看不懂哦,是不是省了一些步骤?比如说直线PA,PB是怎么来的,直线AB又是如何从上面两个式子得到的.再答:没有省啊。圆x^2+y^2=r^2上一点(m,n)处的切线就是mx+ny=r^2,由此得

已知圆O:x2+y2=1与直线l:y=kx+2

(1)当k=2时,直线l的方程为:2x-y+2=0-------(1分)设直线l与圆O的两个交点分别为A、B过圆心O(0,0)作OD⊥AB于点D,则OD=|2×0-0+2|22+(-1)2=25---

(2014•徐州三模)已知P1(x1,x2),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为

由题意可得π2<θ<π,sin(θ+π4)=35>0,∴θ+π4还是钝角,∴cos(θ+π4)=-45,∴22cosθ+22sinθ=3522cosθ-22sinθ=-45,∴cosθ=-210.∴O

已知圆x2+y2=16,定点P(1,2),过P作一直线l交圆O于A.B两点,求AB的中点轨迹.

设AB中点为M(x,y)则OM⊥AB,即OM⊥MP向量OM=(x,y),向量MP=(1-x,2-y)∴向量OM.向量MP=0∴x(1-x)+y(2-y)=0即AB中点的轨迹方程为x²+y&#

已知椭圆x2/a2+y2/b2=1(a>b>0)和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,

画上图象有图像得,当p在(-a,0)或(a,0)点时∠APB最小,且向(-b,0)或(b,0)点移动时∠APB趋向于无穷大,那么∠APB≤90°即可,即a≥√2b即b/a≤√2/2得e≥1/2e∈[1

已知椭圆x2/25+y2/16=1,O为坐标原点,点P在椭圆上运动,求OP的中点M的轨迹方程

M(x,y)P(m,n)则(m+0)/2=x,(n+0)/2=ym=2x,n=2yP在椭圆上m²/25+n²/16=1所以4x²/25+y²/4=1

已知圆方程X2+Y2=25

解:利用公式可直接写出切线方程为:4x-3y=25(附:已知圆方程X²+Y²=r²上一点A(a,b),则其过A点的切线方程为:ax+by=r²)

已知圆x2+y2=25,求:

(1)∵点A(4,-3)在圆x2+y2=25上,圆心:O(0,0),半径r=5,∴kOA=-34,∴切线方程过A(4,-3),斜率k=-1kOA=43,∴过点A(4,-3)的切线方程为y+3=43(x

已知点A(x1,y1)、B(x2,y2)是圆C1:(x-1)²+y²=4上的两个动点,O是坐标原点,

(1)容易的圆与y轴交点位(0,3)、(0,-3)∵OA⊥OB,A在x轴上∴B为(2)容易得OC=0.5AB2(X^2+Y^2)=((X1-X2)^2+(Y1-Y2)^2)2(X^2+Y^2)=(((

已知圆O:X2+Y2=8,点A(2,0),动点M在圆上,求角OMA的最大值

角OMA=tcost=(OM^2+MA^2-OA^2)/(2OM*MA)=1/(4√2)*[√(3-2√2cost)+1/√(3-2√2cost)>=√2/4t最大=arccos(√2/4)

在平面直角坐标系xoy中,已知圆0:x2十y2=16,点p(1,2),M,N为圆O上不同的两

题目是这个吗:  在平面直角坐标系xOy中,已知圆O:x2十y2=16,点P(1,2),M,N为圆O上不同的两点且满足向量PM·向量PN=0,若向量PQ=向量PM+向量PN,则|PQ|的最小值为?

已知圆C:x2+y2=2,坐标原点为O.圆C上任意一点A在x轴上的射影为点B,已知向量OQ=tOA+(1−t)OB(t∈

(1)设Q(x,y),A(x0,y0),B(x0,0).∵OQ=tOA+(1−t)OB,∴(x,y)=t(x0,y0)+(1-t)(x0,0)=(x0,ty0),∴x0=xy0=1ty.又A(x0,y

【急】已知圆O:x2 y2=4与直线l:y=x b,在x轴上有点P(3,0)

如图,考虑b>=0的情况,当直线与OCD线段相交时(不在D点),圆上有两个点与直线距离=2当直线过D点时,只有一个点(C)当直线在OD之外时,所以点距离都大于2由对称性,当|b|<2根号(

已知圆O的方程为x2+y2=25,由其上一点A(-3,4)引两条直线与x轴分别交于BC两点

设P点坐标为(x1,y1),则依题意有x1^2+y1^2=25……………………..①(x1+3)^2+(y1-4)^2=(2√5)^2…..②解此方程组得x1=1.4,y1=4.8直线AP的斜率K1=

已知直线ax+by+c=0和圆O:x2+y2=1交于A,B两点,且|AB|=3

由弦长公式求得弦心距d=R2−(AB2)2=1 −(32)2=12再由三角形的面积公式可得S△AOB=12•AB•d=12×3×12=34,故答案为:34.

已知⊙O的方程为x2+y2=1,则⊙O上的点到直线x=2+45ty=1−35t

∵直线x=2+45ty=1−35t(t为参数)∴3x+4y=10,∵⊙O的方程为x2+y2=1,圆心为(0,0),设直线3x+4y=k与圆相切,∴|k|5=1,∴k=±5,∴直线3x+4y=k与3x+

已知圆O:x2+y2=16,点P(1,2),M,N为圆上不同的两点且满足向量PM乘以向量PN=0,若向量PQ=PM+PN

满足向量PM·向量PN=0,向量PQ=向量PM向量PNPQ是对角线∴四边形ANQM是矩形∴|PQ|=|MN|向量PQ的模的最小值=MN最小值∴MN与OP连线垂直时,有最小值OP斜率=2∴MN斜率=-1