已知四边形abcd是菱形,de垂直于ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:19:24
连结AC,由E、F为中点可EF为中位线,则EF=1/2AC,同理GH=1/2AC,FG=1/2BD,EH=1/2BD;由矩形ABCD可知对角线相等,即AC=BD,从而得到EF=GH=FG=EH,所以四
证明:∵DE∥AC,AE∥DB,∴四边形AODE是平行四边形,∵矩形ABCD的对角线相交于点O,∴AO=DO,∴四边形DOAE是菱形.
连接AC,在正方形ABCD中AO=CO,BO=DO(正方形对角线互相平分)又因为:BF=DE,所以:BO-BF=DO-DE,即OF=OE.所以四边形AECF是平行四边形(对角线互相平分的四边形是平行四
证明:∵对角线BD平分∠ABC,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠3=∠1,∴∠3=∠2,∴DC=BC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.
本题有结论:∠CAE=30°.理由:∵ABCD是正方形,∴OB=1/2AC,OB⊥AC,∵ABFC是菱形,∴AE=AC,AC∥BF,∵EH⊥AC,∴四边形OBEH是矩形,∴EH=OB,∴tan∠EAH
1、因为OA//ED,AE//OD所以四边形OAED是平行四边形因为O是菱形ABCD对角线的交点,所以角AOD是直角所以四边形AODE是矩形2、因为角BCD=120,所以角ABO=30因为AB=6,所
∵PD⊥平面ABCD,∴AC⊥PD.∵ABCD是菱形,∴AC⊥BD.由AC⊥PD、AC⊥BD,得:AC⊥平面PBD,显然DE在平面PBD上,∴AC⊥DE.
AC交BD于O点,三角形ADO与三角形BOC相似,所以DO=BO,对角线互相垂直且平分的四边形是菱形
在菱形ABCD中OA=OB=OC=OD又DE//AC,CE//BD∴DE//OCCE//OD∴四边形OCED为平行四边形又OC=OD∴四边形OCED为菱形(一组邻边相等的平行四边形是菱形)
证明:∵ABCD是菱形∴∠BCE=∠DCE,CB=CD∵CE=CE∴△BCE≌△DCE∴∠CBE=∠CDE∵AB‖CD∴∠AGD=∠CDE∴∠AGD=∠CBE
(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1
当四边形ABCD是菱形时则AO⊥BD角COD为90°因为DE∥ACCE∥BD所以四边形CEDO为矩形.当四边形ABCD是矩形时则OD=OC因为DE∥ACCE∥BD所以四边形CEDO为菱形
求证四边形BEDF为平行四边形吧?菱形好像不大可能平行四边形就好证了因为AB平行等于BCAE=CF所以BE平行等于DF所以四边形BEDF为平行四边形
∠2=∠AED=∠1,所以AE=AD,所以是菱形.面积就是两个等边三角形嘛2*(√3)/4x*6^2=18*√3
∵菱形对角线互相垂直平分,设AC和BD相交于O∴AO=CO,BO=DO∵AE=CF∴AO-AE=CO-CF即OE=OF∴BD垂直平分EF即四边形BEDF是菱形
周长2×4=8面积(2×2√3)÷2=2√3(菱形的面积等于两条对角线乘积的一半)
证明:∵DE//AC,AE//DB∴四边形DOAE是平行四边形(两组对边平行的四边形是平行四边形)∵四边形ABCD是矩形∴OA=OD(矩形的对角线相等且互相平分)∴四边形DOAE是菱形(邻边相等的平行
连接BD交AC于点OAC⊥BDAO=COBO=DO∵AE=CF∴EO=FO所以BEDFO组成的五个直角三角形全等∴BE=ED=DF=FB∴DEBF是菱形
(1)连结AO直角三角形DEB中,EO是斜边中线,所以角ODE=角OED,OD=OE(1).因为角FDE=角AED=90度,所以角FDO=角AEO(2).因为DE垂直于AE,FA垂直于AE,且FA=D
向量AC.向量BD=(AB+AD).(BA+BC)=(AB+AD).(BA+AD)=(AD+AB).(AD-AB)=AD²-AB²=0所以AC垂直于BD