已知四元非齐次线性方程组AX=β

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:06:22
已知四元非齐次线性方程组AX=β
已知n1,n2,n3为齐次线性方程组AX=0的基础解系

(n1+2n2,kn1-4n2+kn3,n1+2n2-n3)=(n1,n2,n3)KK=1k12-420k-1|K|=2k+4所以k≠-2时,向量组...也是基础解系

已知向量组α1,α2,α3是齐次线性方程组AX=0的一个基础解系

直接观察看不出来,就计算行列式,等于0的不是基础解系如(A)行列式=110011-103=2(B)110-102011=-1(C)10-1011121=0选(C)事实上有(α1-α3)+2(α2+α3

请问刘老师,已知齐次线性方程组Ax=0有非零解,那么非零解怎么求呢

用矩阵来求呀,第一步列矩阵,第二步将它的增广矩阵化为阶梯型,然后写出解集再问:0*阵不还是0吗,x=0*A逆=0,怎么求啊,

已知a1,a2,a3是非齐次线性方程组AX=B的三个解向量,则

这题选DA、A(a1+a2+a3)=Aa1+Aa2+Aa3=3B≠B,错B、A(a1+a2-2a3)=Aa1+Aa2-2Aa3=B+B-2B=0≠B,错C、A(1/3a1+a2+a3)=1/3Aa1+

设A是n阶方阵 已知线性方程组AX=0有非零解 证明A^2=0也有非零解

假设x1为Ax=0的非零解,那么Ax1=0,两边左乘A得到AAX1=0即,x1也是A^2x=0的非零解!再问:可以说一下AAX的结构吗?再答:因为A为方阵,所以,AAX=A^2X再问:有非零解的是

求线性方程组AX=b的通解

因为r(A)=2所以AX=0的基础解系含3-r(A)=1个解向量故2x1-(x2+x3)=2(1,2,3)^T-(2,3,4)^T=(0,1,2)^T是AX=0的基础解系.而x1=[1,2,3]^T是

已知β1、β2是非齐次线性方程组AX=b的两个不同的解,α1、α2是对应齐次线性方程组AX=0的基础解析,k1、k2为任

/>因为AX=b的通解等于AX=0的通解加上AX=b的一个特(1)对于选项A.由于β1、β2是非齐次线性方程组AX=b的两个不同的解,因此β1-β22是AX=0的解.故A错误.(2)对于选项B.由于α

已知a,b是非齐次线性方程组AX=B的两个不同的解,c,d是对应齐次线性方程组AX=0的基础解系,k1 ,k2为任意

从题目看,应该是个选择题a+k1c+k2d是AX=B的通解,但还有其他的表示方式.比如(a+b)/2+k1c+k2d也是AX=B的通解.你应该把所有选项贴出来!

几个线性方程组问题:1:已知β1,β2是非齐次线性方程组AX=b的两个不同解,α1,α2是AX=0的基础解系,

1.你这个是选择题?1/2(β1+β2)是Ax=b的解,这个没问题非齐次线性方程组的解的线性组合仍是其解的充分必要条件是组合系数的和等于1.但α1,β1-β2是导出组的基础解系?没法确定线性无关K1α

已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2,是对应齐次线性方程组Ax=0的基础解系

尽管β1—β2是AX=0的解但α1,β1—β2可能线性相关,或者说它不构成基础解系

线性代数 设线性方程组AX=b及相应的齐次线性方程组AX=0,则下列命题成立的是( ).

(A)不对,此时AX=b可能无解(B)不对,此时AX=b可能无解(C)正确.此时r(A)等于未知量的个数,AX=0必只有零解(D)AX=0总是有零解的

线性代数问题 已知三元非齐次线性方程组AX=β 的系数矩阵A的秩为1,

因为矩阵A的秩为1所以AX=0的基础解系的基数为2又X1,X2,X3是三个解向量所以X1-X2=列向量(2,-2,3)和X1-X3=(0,0,2)是AX=0的基础解系AX=β的解为通解加特解,它的解为

线性方程组AX=b的增广矩阵

a=3时有解;2) 1    2   -3    1  &n

已知线性方程组Ax=b存在两个不同的解,求λ,a以及Ax=b的通解

有2个解说明A的rank=0,所以\lambda-1,a=-2,通解是(1/2,-1/2,1)'+c(1,0,1)','代表转置.再问:为什么两个不同的解,A的秩就为零?再答:Ax_1=bAx_2=b

设a1,a2是n元齐次线性方程组AX=0的两个不同解向量,又已知R(A)=n-1,则AX=0的通解是?

首先排除a,b,学过线代都知道答案后两个中选,其次c答案,由于r<n,所以a1a2线性相关,所以通解形式应该是他两想减,不知道你能否明白

已知四元非齐次线性方程组Ax=b中,R(A)=3,而X1,X2,X3为它的3个解向量,且X1=(1,2,3,4)^T,X

因为r(A)=3所以AX=0的基础解系含4-r(A)=1个向量所以2X1-(X2+X3)=(0,1,2,3)^T是AX=0的基础解系.所以AX=b的通解为(1,2,3,4)^T+k(0,1,2,3)^

求四元非齐次线性方程组Ax=b.的通解

四元非齐次线性方程组Ax=b的秩R(A)=2,所以通解有4-2=2个解向量,方程组有解a,b,c,d所以A(a+b)=2b,A(a-2c)=-b,A(a+2d)=3b那么显然A(a+b+2a-4c)=

若n元线性方程组AX=0的系数矩阵的秩为r

n元线性方程组AX=0的系数矩阵的秩为