已知命题p 方程(2x-a)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:30:06
p命题为真的解为:Δ1-x或x-2a
x^2-(3+a)x+3a=0(x-3)(x-a)=0x=3或x=a∵p:方程x^2-(3+a)x+3a=0在【-2,2】上有且仅有一解∴-23∴a的取值范围为:(-∞,-2]∪[2,3)∪(3,+∞
由(2x-a)(x+a)=0得x=a2或x=-a,∴当命题p为真命题时,−1≤a2≤1且-1≤-a≤1,解得-2≤a≤2且-1≤-a≤1,∴-1≤a≤1,即p:-1≤-a≤1.又当命题q为真命题时,“
命题p:a^2*x^2+ax=0(a*x)*(ax+1)=0ax=0,或ax+1=0a=0,等式ax=0恒成立a≠0,则x=0,或x=-1/a0∈[-1,1],p恒为真命题只有q可能是假命题命题q:x
∵方程x2+(a2-1)x+a-2=0的两根为x1和x2,若x1<1<x2<2成立令f(x)=x2+(a2-1)x+a-2则f(1)<0f(2)>0即a2+a−2<02a2+a>0解得a∈(-2,-1
解x^2+2ax+a1时上式不成立当a<1时0<a<1真命题中的a的取值范围是0<a<1再问:为什么是求真命题中的a的取值范围再答:x^2+2ax+a只有两种情况,一、x^2+2ax+a0一为假,则二
(ax-1)(ax+2)=0(a不等于0)所以x=1/a,-2/a所以-1《1/a《1或-1《-2/a《1所以a》1或a《-1,或a》2或a《-2所以a》1或a《-1
命题p或q是假命题,说明p、q均是假命题.一、若p为假命题,令f(x)=2x^2+ax-a^2,则f(x)=0在[-1,1]上无解,因此判别式=a^2+8a^2
命题"p或q"是假命题则说明p和q都是假命题符合p是假命题,那么方程在[-1,1]无解,求出a的范围是a小于-2符合q是假命题,那么应按“没有一个实数满足不等式”,求出a大于0小于2答案应为此两步的合
命题p:方程f(x)=2x+ax-a.a=0在[-1,1]上有解,f(1)*f(-1)=(2+a-a^2)(-2-a-a^2)0,∴a^2-a-2
x^2+2x+1=(x+1)^2≥0的解集为R(p明显是真嘛),x^2-ax+4=0(a
“pvq"为真命题,所以p和q都为真;p为真:△0两个联立就行了
∵关于x的方程x2+mx+a=0(a>0)有两个不相等的实根,∴△>0,即m2-4a>0,得A={m|m<-2a或m>2a}∵关于x的方程4x2+4(m-2)x+1=0无实根,∴△<0,即1<m<3,
(1)命题P不等式x²+2x+a>0恒成立∴判别式=4-4a1(2)命题q方程x²/2a+y²/15-a=1表示焦点在y轴上的椭圆∴15-a>2a>0∴0再问:a≤0或a
p:(m-3a)(m-4a)
pa²x²+ax-2=0在[-1,1]上有解a=0时,-2=0,不满足a≠0时,x1=1/a,x2=-2/a∴-1≤1/a≤1即a≤-1或a≥1或-1≤-2/a≤1即a≤-2或a≥
因为非p是假命题,所以4^x-2^(x-1)+m=0成立则,m=-4^x+2^(x-1)=-(2^x)^2+2^x/2=-(2^x-1/4)^2+1/16所以m
命题"p或q“是假命题你们p,q都是假命题1)p是假命题,那么方程2x^2+ax-a^2=0在【-1,1】上无解设f(x)=2x²+ax-a²,抛物线开口朝上a=0时,不符合题意a
P:Δ=a^2+8a^2=9a^2≥0,而在-1,1上有解,那么-1,1带入方程必须大于等于0,那么有2+a-a^2≥0和2-a-a^2≥0,分别得到-1≤a≤2,和-2≤a≤1这两个同时成立,此外x
命题“p或q”是假命题所以,p、q均为假命题令y=2x²+ax-a²=2(x+a/4)²-9a²/8命题p:方程2x²+ax-a²=0在[-