已知命题;过抛物线y^2=2px的焦点准线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:08:00
已知命题;过抛物线y^2=2px的焦点准线
已知:斜率为1的直线l过抛物线y^2=2px(p>0)的焦点F,且与抛物线交于A,B两点

直线为为y=x-p/2直接用抛物线第一定义,准线为x=-p/2AB=AF+BF=x1+p/2+x2+p/2=x1+x2+pAB=4,所以x1+x2+p=4x=y+p/2带入y^2=2px,有y^2=2

已知抛物线C:y方=2px(p>0)过点A(1,-2).求抛物线C的方程,并求其准线方程

y方=2px(p>0)过点A(1,-2).(-2)^2=2p*1p=2y^2=2*2x=4x准线方程x=-p/2=-1过抛物线y^2=2px(p>0)焦点坐标F(p/2,0)设直线斜率k:y=k(x-

已知抛物线y^2=2px(p>0),过焦点F的动直线l交抛物线于A、B两点,O为坐标原点,求证:

设A(x1,y1)B(x2,y2)直线AB的方程为x=my+p/2,与y²=2px联立得y²-2pmy-p²=0,所以y1y2=-p²x1x2=y1²

已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA,PB,切点分别为A,B.10

已知抛物线方程x²=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B;求证:直线AB过定点(0,4).设过P的切线方程为y=k(x-t)-4,代入抛物线方程得x

已知抛物线方程:y=x²-4x+2,求过线外一点p(1,0)与抛物线切线方程.

再问:没看懂再答:答案对不再问:不知道。因为我没看懂,我求方法,最好用导数来做再答:我用了再答:你给个好评吧再答:我告诉你方法再答:这题有点难算再问:告诉我方法,你写的字我没看懂再答:给好评吧再答:我

已知抛物线y^2=2px(p>0)的焦点为F,过F的直线交抛物线于A、B两点

焦点F(p/2,0),设过焦点的直线方程为x=my+p/2,代入抛物线方程得y^2=2p(my+p/2),即y^2-2pmy-p^2=0,设A(x1,y1),B(x2,y2),则y1+y2=2pm,y

已知抛物线 y^2=4x上一点P到抛物线准线的距离为5,求过点P和原点的直线的斜率.

准线是x=-1,P到抛物线准线的距离为5,则P的横坐标为4,把x=4代入抛物线得y=±4;所以P(4,±4)当P(4,4)时,Kop=1;当P(4,-4)时,Kop=-1;希望能帮到你,如果不懂,请H

已知抛物线y^2=4x上一点P到该抛物线的准线距离为5,则过点P和原点直线的斜率为?

其准线为x=-1p到准线的距离为5则铺垫的坐标可为(4,-4),(4,4)则斜率k为4/4=1和-4/4=-1

已知抛物线y^2=2px(p>0)的焦点为F,过F的直线交抛物线于A、B两点.

(1)A(X1,Y1)B(X2,Y2)AB直线方程为:y=k(x-p/2)代人:y^2=2px得:k^2*(x-p/2)^2=2pxk^2*x^2-(p*k^2+2p)x+k^2*p^2/4=0x1*

如图,已知过抛物线y^2=2px(p>0)的焦点F的直线x-my+m=0与抛物线

答:抛物线y^2=2px(p>0)的焦点F为(p/2,0)直线x-my+m=0经过焦点:p/2-0+m=0,m=-p/2再问:好聪明啊,谢谢!

已知抛物线C:X^2=-Y,点P(1,-1)在抛物线C上,过点P作斜率为K1、K2的两条直线,分别交抛物线C于异于点P的

把斜率为k的直线方程表示出来,然后联立这个方程和抛物线方程,消去y,获得一个关于x的一元二次方程,这个方程的一个根是1(因为直线与抛物线的一个交点已经是P,方程的一个根就是这个点P的横坐标)由韦达定理

已知抛物线x^2=2y的焦点F 准线l 过l上一点P做抛物线的两条切线 切点分别为AB 求证

如图 21题http://www.gaokao750.cn/Files/adminfiles/wanglei/Resource/%B8%DF%BF%BC%CA%D4%BE%ED%BF%E2/

已知过抛物线C:y^2=2px(p>0)的焦点F的直线l交抛物线于A、B两点

(1)设直线方程y=k(x-p/2)代入抛物线方程连列得y^2-2py/k-p^2=0有y1y2=p^2根据题意有x1x2=^2/2p*^2/2p=1得p=2(p>0)(2)作出图象可知直线OK的斜率

已知过抛物线Y平方=2PX(X>0)的焦点的直线交抛物线于AB两点,且AB=5/2P,求AB方程

Y²=2PX[X>0]设过焦点的直线为:Y=k(X-P)则有:k²(X-P)²=2PX→k²X²-2Pk²X+k²P²=

已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.

http://cache.baidu.com/c?m=9f65cb4a8c8507ed4fece7631043843b4007dd743ca0884e23d7955f93130a1c187b84fa7

已知命题,过抛物线y^2=2px的焦点做一条直线,与抛物线交于A,B两点,当AB与抛物线的对称轴垂直时,AB的长度最短.

还是一个概念问题,看抛物线的简单几何性质这一课.最小值应该是通径2P

已知抛物线方程为y^2=2p(x+1)(p>0),直线l:x+y=m过抛物线的焦点F且被抛物线截得的弦长为3,求p的值

顶点(-1,0)开口向右则准线是x=-1-p/2焦点(-1+p/2,0)则-1+p/2+0=m所以y=-x+m=-x-1+p/2代入x^2+x(2-p)+(1-p/2)^2=2px+2px^2+x(2