已知向量a1=(1,1,2)^T,求非零向量a2,a3使a1,a2,a3两两正交
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:54:14
设x=(x1,x2,x3)与a1正交,则x1+2x2+3x3=0.取其一组正交的基础解系即为所求,这是常用的方法令x2=1,x3=0得a1=(-2,1,0)^T--这个正常取取x1=1,x2=2,得a
设a3=(x1,x2,x3),则根据正交有:x1+x2+x3=0x1-2x2+x3=0求出一个解即可:(1,0,-1)
题目未显示完整|a1+a2,-2a1+a2,b1-2b2|=|3a1,-2a1+a2,b1-2b2|--c1-c2=3|a1,-2a1+a2,b1-2b2|--第1列提出3=3|a1,a2,b1-2b
|B|=|a1+a2,2a2|=2|a1+a2,a2|=2|a1,a2|=2|A|=2
过程省略向量2字:|CA|=sqrt(a1^2+a2^2),|CB|=sqrt(b1^2+b2^2),CA·CB=(a1,a2)·(b1,b2)=a1b1+a2b2=|CA|*|CB|cosC,故:c
a向量的绝对值=2(a向量-b向量)(a向量+b向量)=1|a|=2(|a|-|b|)(|a|+|b|)=1|a|^2-|b|^2=1/2|a|^2=1|向量b|=2分之根号2(1)求(a-b)^2+
若向量a、向量b的夹角为135º|向量a+向量b|=√a^2+2ab+b^2=1若向量a平行向量b求向量a.向量b当a,b同向时为√2反向时为-√2
102124157第一行乘-1加到2,3行,得102022055第3行减第2行,得102022000所以a1,a2,a3线性相关,a1,a2线性无关
1,1,10,2,5第1行乘-2加到第3行2,4,71,1,10,2,5第2行乘-1加到第3行0,2,51,1,10,2,50,0,0秩等于非零行数2.向量有3个,所以线性相关
因为通解中只有一个向量所以AX=0的基础解系含1个解向量所以n-r(A)=4-r(A)=1所以r(A)=3.又因为(1,0,1,0)是AX=0的解向量所以a1+a3=0所以a1,a2,a4是a1,a2
(b1,b2,b3)=(a1,a2,a3)P,即B组可由A组线性表示.P=1111-2100-7因为|P|=-3*(-7)=21≠0所以P可逆.即有(b1,b2,b3)P^(-1)=(a1,a2,a3
由a^Ta=(1,-2,-1;-2,4,2;-1,2,1),知a=(1,-2,1)^Ta1^2,a2^2,a3^3分别等于1,4,1
a^Ta=(1,-2,-1;-2,4,2;-1,2,1),a1^2+a2^2+a3^2=tr(a^Ta)=1+4+1=6.
c=(1,1/2-k/2);d=(1,1);∴cos=(1+1/2-k/2)/√(1+(1/2-k/2)²)√(1+1)=cos45°=√2/2;∴(3/2-k/2)/√2√(1+(1+k&
(b1,b2,b3)=11121-1-1121110-1-30231110-1-300-3满秩,所以线性无关
两个向量的夹角不可能是二分之三派.是2π/3就按这个来求.由已知,a*b=3*1*cos(2π/3)=-3/2,因此m*n=(3a-b)*(2a+2b)=6a^2+4a*b-2b^2=6*9+4*(-
齐次线性方程组x1+x2+x3=0的正交基础解系为:(-1,1,0)^T,(1,1,-2)^T即为所求.我发现你还提了别的线性代数问题有人解答后请尽快处理
若向量组a1,a2,a3线性相关,则存在不全为零的实数x,y,z,使xa1+ya2+za3=0,即kx+2y+z=0,2x+ky-z=0,解得k=3或k=-2x+z=0故,k=3或k=-2时,向量组a
1.|a1+a1,a2-a2|=|2a1,0|=02.A*A+5A-4E=0(A-3E)^2+11A-13E=0(A-3E)^2+11(A-3E)+20E=0(A-3E)[(A-3E)+11E]=-2