已知各项均为正数的数列{an},满足a1=1,an 1²-an²=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:38:42
结果是an=4(2n+1);首先由s1,s2,s3的关系可列出两个方程,关于a1,a2,a3.和已知的2a2=a1+a3联立,求出a1=4.接下来,利用根号sn是等差数列,推导出s(n)和a1的关系,
4Sn=(an+1)^24Sn-1=(an-1+1)^2n-1为下标则4an=4Sn-4Sn-1=(an+1)^2-(an-1+1)^2化简得(an-1)^2=(an-1+1)^2则an-1=正负(a
设bn=根号an所以A(n-1)-An=(2倍根号An)+1等于根号[b(n-1)]^2-bn^2=2bn+1即[b(n-1)]^2=(bn+1)^2因为{a}中各项为正数,且a1=2所以b(n-1)
∵(an+1)²-an+1×an-2an²=0∴(an+1+an)(an+1-2an)=0∴an+1-2an=0,an+1+an=0(舍去)∴an+1=2an∴an是等比数列,设a
1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=
4a(1)=[a(1)+1]^2a(1)=14a(n+1)=[a(n+1)+1]^2-[a(n)+1]^2[a(n)+1]^2=[a(n+1)-1]^2若a(n+1)>1a(n+1)=a(n)+2a(
6Sn=an^2+3an+26S(n-1)=a(n-1)^2+3a(n-1)+26Sn-6S(n-1)=6an=an^2+3an+2-a(n-1)^2-3a(n-1)-26an=an^2+3an-a(
1)6Sn=An^2+3An+2因为S1=A1所以6A1=A1^2+3A1+2A1^2-3A1+2=0(A1-1)(A1-2)=0因为A1=S1>1所以A1=2因为An=Sn-S(n-1)注S(n-1
当n=1时,S1=a1=1/2(a1^2+a1),解得a1=1当n>1时,an=Sn-S(n-1)=1/2(an^2+an)-1/2[a(n-1)^2+a(n-1)],整理得[an+a(n-1)][a
6Sn=An^2+3An+26S(n-1)=[A(n-1)]^2+3A(n-1)+26Sn-6S(n-1)=6An=An^2+3An+2-{[A(n-1)]^2+3A(n-1)+2}An-A(n-1)
(1)a1=(a1+1)24,解得a1=1,当n≥2时,由an=Sn-Sn-1=(an+1)2−(an−1+1)24,得(an-an-1-2)(an+an-1)=0,又an>0,所以an-an-1=2
(1)当n=1时,a1=s1=14a21+12a1−34,解出a1=3,又4Sn=an2+2an-3①当n≥2时4sn-1=an-12+2an-1-3②①-②4an=an2-an-12+2(an-an
a2=8a3+a4=48可化为8(q+q²)=48==>q+q²=6==>q=2an=a2q^(n-2)=8·2^(n-2)=2^(n+1)再问:^这个是什么。。题目是a3a4=4
a1+a2+...+an=(1/2)(an²+an)a1+a2+...+a(n-1)=(1/2)(a(n-1)²+a(n-1))两式相减得an=(1/2)(an²+an)
1.A(n+1)^2*An+A(n+1)*An^2+A(n+1)^2-An^2=0两边同除以A(n+1)²An²1/An+1/A(n+1)+1/An²-1/A(n+1)&
4a(1)=[a(1)+1]^2a(1)=14a(n+1)=[a(n+1)+1]^2-[a(n)+1]^2[a(n)+1]^2=[a(n+1)-1]^2若a(n+1)>1a(n+1)=a(n)+2a(
根号Sn的通项公式是nSn=n^2an=Sn-Sn-1=n^2-(n-1)^2=2n-1
log2A(n+1)=log2An+1=log2[2An],则:A(n+1)=2An,则[A(n+1)]/[An]=2=常数,则数列{An}是以A1=1为首项、以q=2为公比的等比数列,得:An=2^
Sn、an、1成等差,则2an=Sn+1(n=1时,得a1=1),当n≥2时,有2a(n-1)=S(n-1)+1,则2an-2a(n-1)=an,即an/[a(n-1)]=2=常数,所以{an}是等比
由题意知2an=Sn+1/2,an>0,当n=1时,2a1=a1+1/2,解得a1=1/2,当n≥2时,Sn=2an-1/2,S(n-1)=2a(n-1)-1/2,两式相减得an=Sn-S(n-1)=