已知双曲线离心为3分之根号10实轴长为2求双曲线标准方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:04:56
已知双曲线离心为3分之根号10实轴长为2求双曲线标准方程
已知双曲线的左右焦点分别为F1F2离心率为3直线y=2与双曲线的两个交点间的距离为根号6

1)e=c/a=3b^2/a^2=8代入双曲线中8x^2-y^2=8a^2线y=2与C的两个焦点间距离为√6y=2代入双曲线中8x^2-y^2=8a^2x=±√(a^2+1/2)两个焦点间距离=2√(

已知双曲线的左、右焦点分别为F1、F2,离心率为根号2,且过点(4,-根号10)

焦点在x轴上.e=c/a=√2,所以c=√2a设双曲线为:x^2/a^2-y^2/(c^2-a^2)=1x^2-y^2=a^2,把(4,-√10)代人方程得:a^2=6,x^2-y^2=6;(2)把x

已知双曲线的中心在原点,焦点在坐标轴上,离心率为根号2,且过点(4,-根号10),求双曲线的方程

e=√2,过(4,-√10)c/a=√2-推-c^2=2*a^2推a^2=b^2焦点在y轴上:不成立焦点在x轴上:16/a^2-10/b^2=1;a^2=b^2推a^2=b^2=6方程为:x^2/6-

已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为根号2,且过点(4,-根号10).(1)求双曲线方程

1)x^2-y^2=6;2)m=根号3或-根号3;若点M在以F1F2为直径的圆上,则MF1垂直于MF2,圆方程为:x^2+y^2=6,点M满足该圆的方程,所以点M在圆上,也证明了MF1垂直MF2;3)

1.已知双曲线的中心在原点,焦点在X轴上.离心率e=根号3,焦距为2的根号3,求该双曲线方程

1)∵e=√3,2c=2√3=>c=√3∴c/a=√3=>a=1=>b=√(c²-a²)=√(3-1)=√2∴双曲线方程x²-y²/2=12)(有点不知所云)(

已知双曲线的中心在原点,焦点在x轴上,离心率e=根号3,焦距为2又根号3,求该双曲线方程.

焦距等于2c=2又根号3所以c=根号3离心率e=c/a=根号3所以a=1b^2=c^2-a^2=2因为焦点在x轴所以x^2/a^2-y^2/b^2=1即x^2-y^2/2=1

已知双曲线焦点在X轴上,过焦点做斜率为3分之根号3的直线交双曲线右支于P,且Y轴平分线F1P,求双曲线离心

依题意设双曲线方程为:x^2/a^2-y^2/b^2=1,(a>0,b>0)过焦点F1(-c,0)的直线L的方程为:y=√3/3*(x-c),直线L交双曲线右支于点P,且y轴平分线F1P,则交y轴于点

已知双曲线的的左右焦点分别为F1,F2.离心率为根号2,且过点(4,-根号10)

(1)c/a=√2==>c=√2a又c^2=a^2+b^2b^2=a^2再将点(4,-√10)代入双曲线的标准方程,求得a=√6同时,解得b=√6,c=2√3双曲线的标准方程:x^2/6-y^2/6=

已知双曲线的离心率为3 虚半轴为12 求该双曲线的标准方程

设双曲线的实半轴长为a,虚半轴长为b,半焦距长为c∵双曲线的离心率为3,虚半轴为12∴e=c/a=3,b=12且c^2=a^2+b^2解得:a^2=18,b^2=144①双曲线的焦点在x轴上时,双曲线

已知双曲线的离心率为根号10/3,实轴长为2,求双曲线的标准方程

e=c/a=根号10/3实轴长2a=2,a=1,c^2=10/9a^2=10/9b^2=c^2-1=1/9故双曲线方程是x^2/1-y^2/(1/9)=1或焦点在Y轴上,有y^2-x^2/(1/9)=

已知双曲线的离心率为3分之根号10,实轴长为2,求双曲线的标准方程

实轴长为2,则2a=2,a=1离心率=e=√1+(b/a)^2=√10/3解得b=1/3,所以标准方程为x^2-9y^2=1再问:那个凸起来的符号是什么意思啊再答:x的平方的意思再答:x^2是指x的平

已知双曲线的渐近线方程为y=正负(4分之3)x,则双曲线的离心率为?

渐近线是:y=±(3/4)x1、若焦点在x轴上,则双曲线是x²/a²-y²/b²=1,其渐近线是y=±(b/a)x,则:b/a=3/43a=4b9a²

已知双曲线焦点在y轴上,虚半轴长为1,离心率为2/3 根号3 求双曲线的标准方程

设方程是y^2/a^2-x^2/b^2=1(a>0,b>0)因为b=1,e=c/a=2√3/3所以e^2=c^2/a^2=(a^2+b^2)/a^2=1+1/a^2=4/3所以a^2=3所以双曲线的标

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10)点M(3,m)在双曲线上

(1)、设焦点在X轴,双曲线方程为:x^2/a^2-y^2/b^2=1,c/a=√2,(a^2+b^2)=2a^2,a=b,x^2/a^2-y^2/a^2=1,双曲线经过点(4,-√10),代入方程,

已知双曲线是左、右焦点分别为F1、F2,离心率为根号2且过点(4,-根号10)

离心率e=c/a=√2,∴a=b设双曲线方程为x²-y²=k代入已知点坐标:k=16-10=6双曲线方程为x²/6-y²/6=1(2)代入x=3求得M点纵坐标|

已知双曲线C:a方分之x方-b方分之y方=1,的离心率为根号3,右准线方程x=3分之根号3,求双曲线方程.

分析:(1).依题有a^2/c=sqrt(1/3),e=c/a=sqrt(3)得a=1,c=sqrt(3),b=sqrt(2)双曲线方程为x^2-y^2/2=1.(1)(2).设A(x1,y1),B(

已知双曲线的左右焦点分别为F1F2,离心率为根号2,且过点(4,-10),求双曲线方程

c/a=根号2∴c²=2a²,即:a²+b²=2a²∴a=b设双曲线方程是:x²/a²-y²/a²=1,代人点

双曲线离心率已知双曲线a方分之x方-y方=1的一条准线方程为x=2分之3,则该双曲线的离心率为

因为a^2/c=3/2a^2+b^2=c^2b=1所以3c/2+1=c^22c^2-3c-2=0c1=-1/2(舍去)c2=2a=根号3离心率为3分之2倍根号3

已知双曲线a方分之x方-y方=1的一条准线方程为x=2分之3,则该双曲线的离心率为

²=1所以c²=a²+b²=a²+1a²=c²-1准线x=±a²/c所以a²/c=3/22a²=3c

焦点在X轴上 过点P(3,根号2)离心率为2分之根号5求双曲线的标准方程

因为焦点在x轴上所以设双曲线的方程为x^2/a^2-y^2/b^2=1(a>0,b>0)因为过点P(3,根号2),代入方程得9/a^2-2/b^2=1因为b^2=c^2-a^2所以9/a^2-2/(c