已知双曲线的中心在原点,过右焦点F(2,0)做斜率为根号下3 5的直线..

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:58:02
已知双曲线的中心在原点,过右焦点F(2,0)做斜率为根号下3 5的直线..
已知双曲线的中心在坐标原点,焦点在x轴上,渐近线的方程为y=±根号3x,过双曲线右焦点F作斜率为根号3/5

y=±根号3x是渐近线,所以b/a=√3,设双曲线为x²/a²-y²/(3a²)=1,c²=a²+b²=4a²右焦点为(

已知中心在原点的双曲线c的右焦点为抛物线Y^2=8x的焦点,右顶点为椭圆X^2/3+Y^2/2=1的右顶点.求该双曲线?

抛物线Y^2=8x的焦点F(2,0)椭圆X^2/3+Y^2/2=1的右顶点A(√3,0)c=2,a=√3,b=1所以方程x²/3-y²=1

已知中心在坐标原点的双曲线C的右焦点为(2,0),右顶点(√3,0)

1.右焦点为(2,0)右顶点为(√3,0)则C=2,A=√3所以方程为x^2/3-y^2=12.把直线l:y=kx+√2代入双曲线的方程得:(1-3k^2)x^2-6√2kx-9=0因为有两个交点,所

双曲线C是中心在原点、焦点为F(5,0)的双曲线的右支,已知它的一条渐近线方程是y=x/2

c=5,b/a=1/2c²=a²+b²25=5b²b²=5a²=20方程x²/20-y²/5=1y=kx+b联立双曲线且

已知中心在原点的双曲线C的右焦点为(2,0)右顶点为(√3,0)

1.右焦点为(2,0)右顶点为(√3,0)则C=2,A=√3所以方程为x^2/3-y^2=12.把直线l:y=kx+√2代入双曲线的方程得:(1-3k^2)x^2-6√2kx-9=0因为有两个交点,所

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(根号3,0).

∵c=2,a=√3∴双曲线方程为x²/3-y²=1设CD的斜率=k,则垂直平分线的斜率=-1/k,设C、D两点为(x1,y1),(x2,y2),设CD中点M为(a,b),设平分线为

斜率为2的直线过中心在原点、焦点在x轴的双曲线的右焦点.它与双曲线的两个交点分别在双曲线的左、右两支上,则双曲线的e的范

∵斜率为2的直线过中心在原点、焦点在x轴的双曲线的右焦点.它与双曲线的两个交点分别在双曲线的左、右两支上,∴ba>2,∴e=1+(ba)2>5.故选:D.

已知双曲线的中心在原点,过右焦点F(2,0)作斜率为根号(3/5)的直线,交双曲线于mn两点,且|mn|=4,求双曲线的

首先我提醒一下,这一类的题目都很容易做的,简单来说就是要构建两个式子,解出a^2b^2第一个式子是右焦点,即a^2+b^2=4第二个式子是根据直线交出来的两点间距离是4列出来的.首先写出直线式子,y=

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(根号3,0),求双曲线C的方程;(

1)c=2,a=√3,b=1,方程:x^2/3-y^2=12)y=kx+√2代入双曲线方程,得(1-3k^2)x^2-6√2kx-9=0设A(x1,y1)B(x2,y2),Δ=72k^2+36(1-3

已知双曲线的中心在原点,过右焦点F(2,0)做斜率为根号下3/5的直线...

首先我提醒一下,这一类的题目都很容易做的,简单来说就是要构建两个式子,解出a^2b^2第一个式子是右焦点,即a^2+b^2=4第二个式子是根据直线交出来的两点间距离是4列出来的.首先写出直线式子,y=

已知中心在原点,焦点在x轴上的双曲线C,过点P(2,3

∵中心在原点,焦点在x轴上的双曲线C,过点P(2,3)且离心率为2,∴4a2−3b2=1ca=2a2+b2=c2,解得a2=3,b2=9,∴双曲线C的标准方程为x23−y29=1.故答案为:x23−y

已知椭圆 的中心在坐标原点,焦点在 轴上,离心率为 ,且过双曲线 的顶点.

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,且过双曲线的顶点.(1)求椭圆的标准方程;(2)命题:“设、是双曲线上关于它的中心对称的任意两点, 为该双曲线上的动点,若直线、均存在斜率,则

已知双曲线的中心在原点,焦点在X轴上,过双曲线的右焦点且斜率为根号5/5的直线与双

双曲线右焦点坐标为(√(1/m+1/n),0)因为直线经过双曲线右焦点,且斜率为√15/5设直线方程为:y=√15(x-c)/5[c=√(1/m+1/n)]依题意:P,Q满足以下方程组:{mx

已知双曲线的中心在原点,过右焦点F(2,0)做斜率为根号下3/5的直线,交双曲线于M、N两点,且MN的绝对值=4,

第一个式子是右焦点,即a^2+b^2=4第二个式子是根据直线交出来的两点间距离是4列出来的.首先写出直线式子,y=根号下3/5(x-2)两个交点MN=4,则说明直线和双曲线联立后的关于x的一元二次方程

已知双曲线的中心在原点o,右焦点为F(c,0),P是双曲线右支上一点,且三角形OEP的面积为根号6/2

如果是△OFP的话...点P到x轴距离为根号3,所以S△OFP=1/2*根号3*c=根号6/2解得c=根号2不妨设双曲线为其标准方程(难得打字)则a^2+b^2=2将P点坐标代入得a=1,b=1∴离心

已知双曲线C的中心在原点,焦点在x轴上,右准线为l:x=12,一条渐近线的方程是y=3x.过双曲线C的右焦点F2的一条弦

(1)由渐近线的方程是y=3x,可设双曲线C的方程为x2λ−y23λ=1(λ>0),则它的右准线方程为x=λ2λ,即x=λ2.∵右准线为l:x=12,∴λ=1,则λ=1,∴所求双曲线C的方程是x2−y

双曲线 试题 双曲线的中心在原点,焦点在x轴上,过双曲线右焦点且斜率为根号下15除以5的直线交双曲线于P,Q两点,若OP

双曲线右焦点坐标为(√(1/m+1/n),0)因为直线经过双曲线右焦点,且斜率为√15/5设直线方程为:y=√15(x-c)/5[c=√(1/m+1/n)]依题意:P,Q满足以下方程组:{mx&sup

高中双曲线1题,急已知双曲线中心在原点,过右焦点F(2,0)作斜率为根号下(3/5)的直线,交曲线与M,N两点,且|MN

y=√(3/5)*(x-2)设双曲线方程为x^2/a^2-y^2/b^2=1M(x1,y1)N(x2,y2)联立方程得(5b^2-3a^2)x^2+12a^2x-12a^2-5a^2b^2=0x1+x