已知双曲线x² 64-y² 36=1的左右焦点分别为F1,F2直线l过点F1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:37:28
已知双曲线x² 64-y² 36=1的左右焦点分别为F1,F2直线l过点F1
已知双曲线x²/36-y²/64=1上一点P到双曲线一个焦点的距离等于9,求△PF1F2的周长

由题意:a=6,b=8,那么c=根号(36+64)=10,根据双曲线的定义:某个点道两焦点的距离之差为2a,则有,p到另一焦点的距离为:9+2*6=21;F1F2=2c=20;所以周长为C=9+21+

已知双曲线与椭圆4x^2+y^2=64共焦点,双曲线实轴长与虚轴长之比为√3:3,求双曲线方程

焦点坐标是(0,-4√3),(0,4√3)那么设双曲线方程为y²/a²-x²/b²=1所以a²+b²=c²=48①又双曲线实轴长与

已知P(x,y)是抛物线y2=-8x的准线与双曲线x

由题意,y2=-8x的准线方程为:x=2双曲线x28−y22=1的两条渐近线方程为:y=±12x由题意,三角形平面区域的边界为x=2,y=±12x z=2x-y即y=2x-z,则z=2x-y

双曲线的标准方程已知双曲线与椭圆X²/27+Y²/36=1有公共的焦点,与椭圆相交,交点纵坐标为4.

问题应该问的是双曲线的标准方程设双曲线的标准方程为y^2/a^2-x^2/b^2=1已知双曲线与椭圆X²/27+Y²/36=1有公共的焦点,即c^2=9,焦点坐标为(0,±3).因

已知双曲线y=3/x与直线y=ks+2相交求大神帮助

两个方程联立,得到关于X的一元二次方程,有伟达定理,两根之和等于-b/a,得到x1+x2=-2/k=3,k=-2/3,再代入就行了

已知双曲线与椭圆x^2/16+y^2/64=1有相同的焦点,它的一条渐近线为y=x,求双曲线的方程

因为它的一条渐近线为y=x那么可以设双曲线方程为y^2-x^2=c而椭圆x^2/16+y^2/64=1的焦点是(0,4√3)、(0,-4√3)因为焦点在y轴,所以c>0且c+c=(4√3)^2故c=2

已知双曲线x^2/36-y^2/64=1上一点p到双曲线一个焦点的距离等于9,求△PF1F2的周长

50.再问:过程啊再答:a=6b=8c=10pf1-pf2=2a=12pf1=212c=2020+9+21=50再问:太简短了,我想要详细点的再答:你画出图来,一看就明白,再问:我不会画图再答:htt

数学问题:已知双曲线x^2-y^2=4,直线:y=k(x-1)

把y=k(x-1)代入双曲线x^2-y^2=4中得到关于x的一元二次方程,求出判别式△的表达式,(1)当△>0时,直线l与双曲线有两个公共点,(-2根号3)/3

已知双曲线4y^2-9x^2-36=0,则双曲线的焦点坐标为?

两边除以36得,y^2/9-x^2/4=1,所以,c=√(9+4)=√13,焦点坐标是(0,√13)(0,-√13)(谁的系数为正,焦点就在谁的轴上,本题y的系数为正)

已知双曲线与椭圆4x²+y²=64有相同的焦点,它的一条渐近线是y=x,则双曲线方程为

4x²+y²=64x²/16+y²/64=1c²=64-16=48它的一条渐近线是y=x,是等轴双曲线,焦点在y轴上设为y²/a²

已知双曲线x^2-y^2/3=1 存在 y=kx+4 对称

x^2-y^2/3=13x^2-y^2-3=0假设两点坐标是(x1,y1),(x2,y2)则(1)过这两点的直线垂直于y=kx+4(2)这两点的中点[(x1+x2)/2,(y1+y2)/2]在y=kx

已知双曲线已知双曲线x²/a²-y²/b²=1(a>0,b>0)的左右焦点为F1,F2,梯形的顶点A,B在双曲线上且F1

解题思路:考查了双曲线的第二定义,以及双曲线的离心率的范围。解题过程:

已知双曲线x^2/64-y^2/36=1,焦点F1、F2,角F1PF2=60,P在双曲线上,求S三角形F1PF2

双曲线实半轴a=8,虚半轴b=6,c=10,|F1F2|=2c,2c=20,根据比曲线定义,|PF1-|PF2|=2a=16,设|PF2|=x,在三角形PF1F2中,

已知双曲线过点(3,-2),且与椭圆4x^2+9y^2=36有相同的焦点,求双曲线的方程

4x^2+9y^2=36,x^2/9+y^2/4=1,则有,a=3,b=2.c=√a^2-b^2=√5.则椭圆的焦点坐标为F1,(-√5,0),F2(√5,0).设,双曲线的方程为:x^2/a^2-y

已知双曲线x²/64-y²/36=1的左右焦点为F1F2 ,直线l过F1,交双曲线的左支于AB两点,

a=8,b=6,c^2=64+36=100,c=10|AF2|-|AF1|=2a=16|BF2|-|BF1|=2a=16|AF2|+|BF2|-(|AF1|+|BF1|)=4a=32|AF1|+|BF

已知双曲线y=1x

∵双曲线y=1x与直线y=x-23相交于点P(a,b),∴b=1a,b=a-23,∴ab=1,a-b=23,则1a-1b=b−aab=−231=-23.故答案为:-23

已知双曲线c;x²-y²=1及直线l;y=kx-1,

当k=0时,∴直线l∶y=-1代入x²-y²=1,解得x=+-√2∴S∆AOB=√2满足条件,当k≠0时将y=kx-1代入x²-y²=1中,∴(1-

已知双曲线与椭圆x^2/27+y^2/36=1有相同的焦点,且过点(sprt15,4).求双曲线的方程

椭圆x²/27+y²/36=1a²=36,b²=27c²=36-27=9c=3焦点为(0,3)(0,-3)点(√15,4)根据双曲线的定义2a=|√(

已知双曲线过点(3,-2),且与椭圆4x+9y=36有相同的焦点,求双曲线的方程

4x^2+9y^2=36,x^2/9+y^2/4=1,则有,a=3,b=2.c=√a^2-b^2=√5.则椭圆的焦点坐标为F1,(-√5,0),F2(√5,0).设,双曲线的方程为:x^2/a^2-y