已知单位正方体ABCD-ABCD,如图建立空间直角坐标系oxyz

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:34:11
已知单位正方体ABCD-ABCD,如图建立空间直角坐标系oxyz
已知正方体ABCD-A1B1C1D1,则:

(1)是.因为AA1∥CC1,AA1与CC1确定以平面;(2)是.因为点B,C1,D不共线;(3)如图:平面AC1D与平面BC1D的交线为DC1,平面ACD1与与平面BDC1的交线为MN.(1)根据共

已知正方体ABCD—A1B1C1D1棱长为1,点P在线段BD1上.当∠APC最大时,三棱锥P—ABC的体积为

空间向量法可做!P在BD1的靠ABC面的三等分点时APC最大为120度,三棱锥P—ABC的体积为1/18 另外可以判定:RT三角形D1CB中,当PC最短时,角APC最大.由RT三角形射影定理

已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点.

1.取A1B1C1D1对角线的交点为O1连接C1O和A01,因为ABCD,A1B1C1D1都是正方形所以O1C‖OA且O1C=OA所以AOC1O1是平行四边形所以OC1‖A01A01不在面AB1D1内

已知正方体ABCD―A1B1C1D1,0点是底ABCD对角线的交点

(1)证明:连接A1C1、B1D1相交于点O1再连接AO1由正方体的性质得∵AO//O1C1AO=O1C1∴AOC1O1是平行四边形∴OC1//AO1∵AO1在面AB1D1内∴CO1//面AB1D1(

已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点 证明A1C⊥AB1

∵ABCD-A1B1C1D1是正方体∴BC⊥平面ABB1A1∵AB1在平面ABB1A1内∴AB1⊥BC因为ABB1A1是正方形∴AB1⊥A1B又A1B∩BC=B∴AB1⊥平面A1BC∵A1C在平面A1

已知正方体ABCD A1B1C1D1

(1)如图取AC,BD中点O取DD1中点J连接OJ∠JOD即异面直线AC与D1B所成的角(2)连接A1C1∵CC1||DD1∴∠A1CC1即A1c与D1D所成的角tan∠A1CC1=A1C1/CC1=

已知正方体ABCD-A'B'C'

解题思路:本题主要考查空间二面角的求法。解题过程:

如图,已知正方体ABCD-A1B1C1D1中,O是底面ABCD对角线的交点.

1设顶面A1B1C1D1的中心(即对角线的交点,类似于O点)为点01.连接A和点O1.易证,AOC1O1为平行四边形,所以线A01平行于线C1O由于线A01属于面AB1D1,而A01平行于C1O所以C

已知ABCD-A1B1C1D1为单位正方体,黑白两只蚂蚁从A点出发,沿棱向前爬行,每走完一条棱称为走完一段.白蚂蚁爬行路

仔细分析题后,其实很简单,先分析白蚂蚁走的路线:AA1-A1D1-D1C1-C1C-CB-BA-AA1,因此,它其实是以六个棱为周期运动,同理,分析黑蚂蚁走的路线:AB-BB1-B1C1-C1D1-D

已知正方体ABCD-A1B1C1D1,求证B1D⊥平面A1BC1

连接BD,B1D1.知A1C1垂直于B1D1.又:BB1垂直于底面A1B1C1D1.故BB1垂直于A1C1.(***垂直于平面,就垂直于这平面上的任何直线)即推出:A1C1垂直于平面BB1D1D.(&

已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点,求证A1C⊥面AB1D1

要证A1C⊥面AB1D1只需证A1C⊥AB1,A1C⊥AD1即可证明:连接A1B,A1D∵是正方体∴BC⊥面ABB1A1∴BC⊥AB1∵AB1⊥A1B(对角线互相垂直)∴AB1⊥面A1BC∴AB1⊥A

如图所示,已知正方体ABCD-A1B1C1D1.

(1)连接B1C,可证B1C是A1C在平面BB1C1C上的射影,所以所求角就是同一平面内B1C与BC1的夹角,90度(2)连接BD交AC于点P,可证BD⊥平面AA1C1C,可证C1P是BC1在平面AA

正方体ABCD-A1B1C1D1中,二面角C1-ABC的平面角等于

应该是二面角C1-AB-C∠C1BC就是二面角C1-AB-C的平面角

在正方体ABCD-A’B’C’D’中,已知棱长为a,求三棱锥B’-ABC的体积

(1)三棱锥B’-ABC是以ABC为底面,BB'为高正方体ABCD-A’B’C’D’中,棱长为a,那么平面ABC的面积=a*a/2=a^2/2BB'=a所以三棱锥B’-ABC的体积=(a^2/2)*a

已知正方体ABCD-A1B1C1D1中,求证:

证明:(1)正方体ABCD-A1B1C1D1中,B1B⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵AC⊥BD,BD∩B1B=B,∴AC⊥平面B1D1DB;(2)∵AC⊥平面BDD1B1,又

已知正方体abcd-A1B1C1D1棱长为2 求正方体对角线ac1的长

ac1为2根号3再答:不会再问再问:求过程!?还有图片里的23问再答:再答:好的,能先采纳下吗,有很多人我做的半死结果都不给采纳再问:嗯再答:图片看不清再答:你平放再拍一张再问:求证B1D平行平面BD

已知正方体ABCD—A1B1C1D1,写出平面内ABC和平面AB1C的一个法向量

平面ABC的法向量为AA1,平面AB1C的法向量为BD1

已知正方体ABCD-A1B1C1D1是棱长为a的正方体,MN分别是B1C1,C1D1的中点.

(1)连BN,DN,A1N,A1D,BD,A1B,得三棱锥A1-BND.设A1D中点为P,可以求得PN=√3/2a,PB=√6a/2,BN=3/2a,所以,PN⊥PB,又PN⊥A1D,所以,PN⊥面A

已知正方体ABCD-A1B1C1D1,求证:A1C⊥面AB1D1.

证明:连接A1C1,A1B,∵CC1⊥面A1B1C1D1,∴A1C1为A1C在平面A1B1C1D1内的射影,.又∵A1C1⊥B1D1,由三垂线定理得:A1C⊥B1D1.同理可证A1C⊥AB1,又D1B