已知函数z=ln(u)sinv,其中u=x-y,v=xy,求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:58:57
3f(x)+f(-1/x)=2x-x(1)令x=-1/x则3f(-1/x)+f(x)=2/x+1/x(2)(1)×3-(2)8f(x)=6x-3x-2/x+1/x所以f(x)
先问一下,ln/y是要表达什么意思?先不论题目,说明一下一般解法dZ=Zx*dx+Zy*dy(其中Zx表示Z(x,y)对x求偏导.)然后对“x=z*ln/y”使用隐函数求导法则,求出Zx与Zy,代入即
v=lny答案是1+(e^x乘x)+e^x---------------------1-[cos(lny)/y]分子分母项也可以变化下再问:v=lnx。。。打错了不好意思!再答:LZ我恨你。。1+(e
x=z(lnz-lny)=zlnz-zlny令F(x,y,z)=zlnz-zlny-xaF/ax=-1aF/ay=-z/yaF/az=lnz+1-lny所以az/ax=-Fx/Fz=1/(lnz+1-
这是求偏导数.偏u/偏x=fx'dx+fz'*偏z/偏x=fx'dx+fz'*x/[(x^2+y^2)^0.5],偏u/偏y=fy'dy+fz'*偏z/偏y=fy'dy+fz'*y/[(x^2+y^2
ln(x+y+1)≠0【它充当分式的分母,当然不能为0】也就是ln(x+y+1)≠0=ln1x+y+1≠1且x+y+1>0【对数的真数必须大于0】联合得到:x+y∈(-1,0)∪(0,+∞)
由柯西-黎曼条件:对u(x,y)=1/2ln(x^2+y^2)求x的偏导x/(x^2+y^2),对u(x,y)=1/2ln(x^2+y^2)求x的偏导y/(x^2+y^2),f'(z)=x/(x^2+
(x+1)y>0(1)x+1>0且y>0,得到x>-1且y>0;(2)x+1
怎么是u-v啊?觉得应该是实部虚部是两个式子吧验证两者满足二维拉普拉斯方程后用柯西黎曼方程,然后求积分吧u-v的话我也看不懂…
第一题是用的拉格朗日数乘法计算条件极值.即在条件a=x+y+z下的乘积xyz的极值.设参数为u,构造拉格朗日函数F(x,y,z,u)=xyz+u(x+y+z-a)分别对四元函数求偏导,使其为零,联立方
ux=2x/(x^2+y^2+z^2)uy=2y/(x^2+y^2+z^2)uz=2z/(x^2+y^2+z^2)故du=uxdx+uydy+uzdz=2x/(x^2+y^2+z^2)dx+2y/(x
u=ln(xy+z)du=d[ln(xy+z)]/dx*dx+d[ln(xy+z)]/dy*dy+d[ln(xy+z)]/dz*dz=y/(xy+z)*dx+x/(xy+z)*dy+1/(xy+z)*
dy/dx=dy/du*du/dx+dy/dv*dv/dx=v*e^(x+y)+u*y/x=ln(xy)*e^(x+y)+e^(x+y)*y/x=e^(x+y)[ln(xy)+y/x]所以dy=e^(
dz/dx是z对x的偏导,这样把u,v都带入的话直接球偏导就好了dz/dx=y*e^(xy)*sin(x+y)+e^(xy)*cos(x+y)同理也可得到dz/dy=x*e^(xy)*sin(x+y)
这道题目打错了.y=y*sinv,应该是y=u*sinv方法是将其转化为第一型曲面积分.写为(Pcosa+Qcosb+Rcosy)ds的形式,然后用参数方程改写它.关键是写出参数方程下s的法向量以及d
∂z/∂x=∂z/∂u*du/dx+∂z/∂v*dv/dx=1/(u^2+v)*2u+1/(u^2+v)*2xy∂z
u'x=2x/(x^2+y^2+z^2)u'y=2y/(x^2+y^2+z^2)u'z=2z/(x^2+y^2+z^2)du=2xdx/(x^2+y^2+z^2)+2ydy/(x^2+y^2+z^2)
设z=cosA+isinAu=1+(cosA+isinA)²=1+cos²A-sin²A+i*2sinAcosA=(1+cos2A)+isin2A|u|²=(1
对等式两边求全微分du=【1/(2x+3y+4z^2)】【2dx+3dy+8zdz】