已知函数y=x b和y=ax 3的图象交于点P,则不等式x b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:53:12
(Ⅰ)∵f(x)=ax3+bx2,∴f'(x)=3ax2+2bx.由题意有f′(−1)=3a−2b=0f′(1)=3a+2b=12,解得a=2b=3.∴函数f(x)的解析式为f(x)=2x3+3x2.
A,望采纳AB点处的导数均为负值,而B点处斜率较大,到数值较小
X0=1a=2b=-9c=12
f'=3ax^2+2bx+4过则(-2,0)0=12a-4b+4f'=0x=-2为极值点则-8a+4b-8=-8得a=-1b=-2
f'(x)=3ax2-6x+1 …(2分)k=f'(1)=3a-5=-2∴a=1所以f(1)=1-2+1+b=b-1,由P(1,f(1))在直线2x+y+1=0上,故2+b=0∴b=-2
证明:设ax3=by3=cz3=t3,则a=t3x3,b=t3y3,c=t3z3,因为3a+3b+3c=t(1x+1y+1z)=t,又因为3ax2+by2+cz2=3ax3•1x+by3•1y+cz3
已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))出的切线方程为y+2=0说明在(1,f(1)),f'(1)=0,且,f(1)=2f'(x)=3ax^2+2bx-3f'(1)=3
对函数y=ax3-15x2+36x-24求导数,得y'=3ax2-30x+36∵函数y=ax3-15x2+36x-24在x=3处有极值,∴当x=3时,y'=27a-54=0,解之得a=2由此可得函数解
y=ax^3+bx^2y'=3ax^2+2bx根据已知,可得:x=1,y=3,y'=0.代入a+b=33a+2b=0a=-6,b=9y'=-18x^2+18x=-18x(x-1)x=0时,极小值为0
这道题先求原函数的导函数y一撇=3ax2+3x-1这个导函数的函数值指的是原函数的切线斜率.因为原函数在实数范围内都是单调减函数,所以原函数的切线斜率一定小于0,也就是导函数的函数值一定小于0.所以导
移向有3xa+(10-y-2x)b-2x(4y+7)ab=0因为不共线所以x=0y=10
求导得:y′(x)=3ax2+2bx+6,由(-2,3)是函数的递增区间,得到y′(-2)=0,且y′(3)=0,即12a-4b+6=0①,且27a+6b+6=0②,联立①②,解得a=-13,b=12
由函数y=ax3-15x2+36x-24,x∈[0,4]得:y/=3ax2-30x+36∵函数在x=3处有极值∴f/(3)=27a-54=0故a=2,函数表达式为y=2x3-15x2+36x-24∴f
y=ax^3+bx^2y'=3ax^2+2bx根据已知,可得:x=1,y=3,y'=0.代入a+b=33a+2b=0a=-6,b=9y'=-18x^2+18x=-18x(x-1)x=0时,极小值为0
(1)根据题意可知函数在x=-2处取极小值8f′(x)=3ax2+2bx+4∴f′(−2)=12a−4b+4=0f(−2)=−8a+4b−8=−8解得:a=-1,b=-2∴f(x)=-x3-2x2+4
因为是同类项所以它们同元的次数相等所以可以列出方程:y+3=2x3x=8-2y解得:x=2y=1
y=x^2-2bx+4=(x-b)^2+4-b^2所以顶点坐标为(b,4-b^2)因为顶点在x轴上所以4-b^2=0所以b=+-2
把式子中所有的向量a和所有的向量b都放在一起,得:(3x-4y-7)a=(2x-10+y)b因为向量a,b不共线,而我们知道,如果a=kb(k是系数),那么a与b共线.因此3x-4y-7=02x-10
f(0)=d=0b=0f'(x)=3ax^2+c切线的斜率K=8当x=3时,y=6f'(3)=27a+c=8f(3)=27a+3c=6a=1/3c=-1f(x)=1/3x^3-x