已知函数y=f(x)在x=x0处可导,那么lim
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:31:21
由题意f'(x0)=2x0=f(x0)=x0^2sox0=0orx0=2对应的切线方程分别为y=00ry-4=4(x-2)即y=4x-4
楼主输入有误,是x->xolim(x->x0)[f(x0-x)-f(x0+x)]/x=lim(x->x0)[f(x0-x)-f(x0)+f(x0)-f(x0+x)]/x=lim(x->x0)[f(x0
lim{[f(x0-ΔX)-f(x0)]/ΔX}=-lim{[f(x0-ΔX)-f(x0)]/(-ΔX)}=-f'(x0)=-11
f(x0)=f(2)=4+1=5f(x0+△x)=f(2.1)=2.1²+1=5.41△y=5.41-5=0.41
f‘(x)=(x-2)(x^2-1)所以该函数在区间|2,正无穷|U|-1,1|是单调递增函数在区间(负无穷,-1)U(-1,2)是递减函数
答案为D,不一定可微.对于多元函数,当函数的个偏导数都存在时,虽然能形式的写出dz,但它与△z之差并不一定是较ρ较小的无穷小,因此它不一定是函数的全微分(根据全微分的定义,同济六版第70页),反例在7
当ΔX趋向零时[f(x0-2ΔX)-f(x0)]/ΔX=-2[f(x0-2ΔX)-f(x0)]/(-2ΔX)=-2f'(x0)=-22
lim[f(x0-x)-f(x0+x)]/x(x->x0)=-2lim[f(x0+x)-f(x0-x)]/[(x0+x)-(x0-x)](x->x0)=-2f'(x0)
limf(x0+2h)-f(x0)/h=lim[f(x0+2h)-f(x0)/2h]*2=2limf(x0+2h)-f(x0)/2h=2f′(x0)=6
f(0)+f(0)=f(0).所以f(0)=0.f(x)+f(-x)=f(0)=0.所以f(x)=-f(-x).所以是奇函数.我不知道你那个x<0时,f(x)>0是干嘛的.
方程ax*x+(b+1)x+b-1=x恒有两解ax*x+bx+b-1=0的判别式大于0b*b-4ab+4a>0设f(b)=b*b-4ab+4a抛物线开口向上且恒大于0判别式16a*a-16a
dy=f'(x0)△x=2△x所以是BΔx的同阶无穷小,但不是等价无穷小
A.因为在x0处可导所以Δy/Δx在Δx->0时有极限.所以Δy的极限必须是0.否则Δy/Δx的极限就是无穷,不可导了.
1不可导,切线存在的.绝对值的X2不可导,切线不存在的.X分之一3都是在X=0处
题目有点小问题,是这样吗?已知函数f(x0)=x,g(x)=x-1若存在x0∈r使f(x0)再答:由题意知,x0²
因为lim(h→0)h/[f(x0-2h)-f(x0)]=1/4所以lim(h→0)2h/[f(x0-2h)-f(x0)]=1/2得lim(h→0)[f(x0-2h)-f(x0)]/2h=2所以lim
极值点处导数为0.(看图像的话,切线斜率为0.)再问:f’(x0)>0或f’(x0)<0为什么错误呢?再答:因为它是极值点啊!极值点处导数就是为0的。(看书啊亲!)是在那个小区域内的最大值。在x->x
第一问(X+1/(X-3)=XX^2-3X=X+1X^2-4X-1=0(X-2)^2=5X=2+/-根号5崩溃了我不会打根号.这个是第一问答案我机器要关机了先回答一个第二问这不迎刃而解吗?
f(x)=x(5x-2)/(x+2)=x解得x=1,2所以不动点是1和2将x1=1,x2=2代入F(X)-X1/(F(X)-X2)=K*(X-X1)/(X-X2)化简得到(4x-4)/(3x-6)=k
如:x^3一、二阶导在x=0处都是0,却在0点没有极值那在什么情况下是有极值的呢:如:f'(x0)=0且f''(x0)!=0;写一个符合f′(x0)=0,f〃(x0)=0又有极值的函数:F(x)=x^