已知函数gx等于ax2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:01:52
很高兴为你虽然f(x),g(x)表达式一样,但定义域不同,是两个不同的函数那么:f(x)=x^2-2x=(x-1)^2-1,表示开口向上,顶点在(1,-1),对称轴为x=1的抛物线,因此函数f(x)在
f(x)=loga(x+1),f(x)的定义域为x>-1g(x)=loga(1-x),g(x)的定义域为x
a>0,且a≠1f(x)=loga(x+1)g(x)=√(1-x)f(x)+g(x)=loga(x+1)+√(1-x)零和负数无对数,x+1>0,x>-1根号下无负数,1-x≥0,x≤1定义域:(-1
h(x)=f(x)-g(x)=Inx+a/x-3/2h(x)'=1/x-a/x^2若a>=eh(x)'=0解出a>=e/2,综合前提条件a>=e若0=e^(1/2)综上,a>=e^(1/2)
这个开口向上的抛物线,判别式为(a-2)²-4*3*3=a²-4a-32,自己可以看看图,写一下.再问:没懂
你题目没给清楚,不知道是g(x)=-x^2-4x还是+4x本题就用g(x)=-x^2+4x来为你求解,换个函数方法是一样的,自己可以另行计算.(题外话:此类题目的核心是求复合函数的单调性问题,复合函数
再问:...好像不太对
由已知函数f(x)=lnx,定义域x>0;函数g(x)=ax2/2+bx,若a=-2,那么g(x)=-x2+bx;所以函数h(x)=f(x)–g(x)=lnx–(-x2+bx)=lnx+x2–bx,定
(1)如果函数g(x)的单调递减区间为(-1/3,1),求函数g(x)的解析式(2)在(1)的条件下,求函数y=g(x)的图像过点p(1,1)的切线方程(3)对一切的x属于(0,+无穷),2f(x)小
第一问用韦达定理,第二问代入相减证明所得试小于0再问:求具体过程再答:其实我只知道第一问答案,应该是-4。具体的是阿尔法与贝塔之和等于m/2,之积等于-1,就把这个往里一代就行。至于第二问也只不过是我
(1)当a=3,b=-1时,求函数f(x)的最小值;(2)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围.
g’(x)=(lnx-1)/(lnx)^2f’(x)=g’(x)-a因为函数f(x)在(1,+∞)上为减函数,故当x>1时,f’(x)≤0恒成立,即g’(x)≤a恒成立,令h(x)=g’(x)由h(x
设(x,y)是g(x)图像上的一点因为:函数fx和gx的图象关于原点对称所以:(-x,-y)是f(x)图像上的点因为:fx=x^2+2x所以:-y=(-x)^2+2(-x)y=-x^2+2x所以:g(
f'=e^x+xe^x,g'=2ax+1f'-g'=e^x-1+xe^x-2axx>等于0时.恒有fx>等于gxf'-g'>0,解得a>0
x+1>0=>x>-1①3x+2>0=>x>-2/3②g(x)>=f(x)=>g(x)-f(x)>=0即log2[(3x+2)/(x+1)]>=0所以(3x+2)/(x+1)>=1解得x>=-1/2③
1)h(x)=2x=f(x)+g(x)1)以-x代入x,得:h(-x)=-2x=f(-x)+g(-x),因f(-x)=f(x),g(-x)=-g(x),所以此式化为:-2x=f(x)-g(x)2)1)
g(x)=g(-x) h(x)=-h(-x)f(x)=g(x)+h(x)=10^x f(-x)=g(-x)+h(-x) &
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
答:f(x)=x^2+ax,g(x)=lnxy=f(x)-g(x)=x^2+ax-lnxy'=2x+a-1/x因为:y''=2+1/x^2>0所以:y'=2x+a-1/x是增函数y在[1,2]上是减函
f(x)=g(x)+h(x)f(-x)=g(-x)+h(-x)=-g(x)+h(x)两式相减得:g(x)=[f(x)-f(-x)]/2故有:g(x)=(a+1)xg(x)在x