已知函数fx等于x2减1分之ax
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:01:05
已知f(x)等于2^x+1分之a*2^x+a减2x属于R若fx满足f负x等于负fx求实数a的值,判断函数的单调性求函数F(x)=(a*2^x+a-2)/(2^x+1)∵f(-x)=(a*2^x+a-2
a减2+1?分母就是a-1?说明白再问:再答:再问:第一问!再答:第一问不是证明了吗,箭头向上就是表示单调递增。其导数恒大于0请采纳谢谢再问:奥~~原谅我是学渣
因为f(x)是偶函数,所以f(-1)=f(1),代入就可以求出a了!
因为是对于a属于[-1,1]恒成立,所以应看作是关于a的函数,而在本式中可以看作是关于a的一次函数,要使得大于0恒成立,只要让a=-1,a=1都成立即可.所以x^2+2x-1>0;-x^2+2x+1>
fx'=ex(2x+a)+ex(x2+ax+1)=ex(x2+(2+a)x+a+1)=ex(x+a+1)(x+1)令fx'=0得x1=-a-1,x2=-1ex>01)a=0fx是增函数无极值2)a>o
你是要求的答案是什么?再问:x大于等于0小于等于1求单调区间和值域再答:再问:步骤再答:没有
加一分之一?f(x)是奇函数,就可以得到f(0)=0你把这个x=0带入就可以啦再问:好吧,谢谢你再答:如果这个方法不行,就用f(-x)=-f(x)一般都可以解决
a=x2,bR
f到底是e的x^2次方还是x^2/e呢?我就按照后者计算了.首先,定义域(0,+∞)F(x)=x^2/e-2alnxF'=2x/e-2a/xa≤0时,F‘>0,F单调递增,无最值a>0时,F在(0,√
楼主,对给点时间考虑一下哈.答案再2楼再问:嗯嗯谢谢再答:解函数fx经过配方后的fx=(x-a)^2+5-a^2,对称轴位a。因为a>1所以在定义域[1,a]中最小值出现在x=a的时候,fx=5-a^
由于f(x)=x²+ax+2,并且g(x)=f(x)+x²+1,那么可以得到g(x)=2x²++ax+3,如果g(x)在区间(1,2)上有两个零点,那么有如图所示回答:
f(x)=alnx+(ax^2)/2-2x当a=1时,f(x)=lnx+x^2/2-2xf'(x)=1/x+x-1f''(x)=1-1/x^2即1-1/x^2即x=1或x=-1时,f(x)存在拐点,即
f(0)=ea>=ef(-2)=[5-2(a-2)]/ea>=9/(e+2)f'(x)=[x^2+(a-2)x+1+2x+(a-2)]e^(x+1)=[x^2+ax+(a-1)]e^(x+1)=[x+
函数fx=1/x2+Inx求导得到f‘(x)=-2/x^3+1/x令f’(x)=02/x^2=1x=√2所以函数极值是(√2,1/2-1/2ln2)再问:好像要考虑不可导点吧再答:x是大于零的啊,f(
f(x)的值大于并等于二分之一再答:对不起我看错了,应该是求x的范围再答:再问:谢了再答:不用再答:有不会的题目尽管找我,我是复读生,我需要锻炼!不过帮不上忙的话请不要x我喔!哈哈
f'(x)=2x-2;令f'(x)=0,得x=1;f(1)=2;f(-1)=6f(2)=3;所以最大值为6.
(1)f'(x)=x-1/x令y'=0得:x=1f''=1+1/x^2>0∴x=1时函数取得极小值:1/2.(2)f(x)=1/2x^2+lnxf'(x)=x+1/x>0f(x)在[1,e]上递增,最
fx等于2这个是错的吧,应该是某个X值等2,直接把这个值了X=1时f1等于1代进去,然后解二元一次方程,很简单.
画出f(x)的图像可知,f(x)图像在y轴左侧横等于一,在y轴右侧为单调增且恒大于1则,由图像可得要使不等式成立需满足:1-x^2>0且2x