已知函数fx等于sin wx最小周期为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:28:16
f(x)=[(cosx)^2-(sinx)^2]+√3sin2x=cos2x+√3sin2x=2sin(2x+π/6),最小正周期T=π,由-π/2+2kπ≤2x+π/6≤π/2+2kπ,k∈Z解得:
用辅助角公式将sinx-cosx化为√2sin(x-π/4)再问:然后怎么做啊,你能全部告诉我吗再答:可以但是我想知道根号下是什么再问:再问:图片在这里再问:可以做出来吗再答:可以,上传不了照片啊再答
f(x)=2sinx(cosx-sinx)=2sinxcosx-2(sinx)²+1-1=sin2x+cos2x-1=√2sin2xcosπ/4+cos2xsinπ/4-1=√2sin(2x
y=sinwxcoswx-sin^2(wx)+2=0.5sin2wx+cos^2(wx)+1=0.5sin2wx+0.5cos2wx+1.5=[(2^0.5)/4]*sin(2wx+pi/4)+1.5
以π/2为最小正周期,那么π/2的整数倍也是周期f(17π/6)=f(3π-π/6)=f(-π/6)=f(-π/6+π/2)=f(π/3)=1
f(x)=2(sinx+cosx).cosx=2sinxcosx+2(cosx)^2=sin2x+2(cosx)^2-1+1=sin2x+cos2x+1所以f(x)的最小正周期为π
f(x)=(√3sinwx-coswx)coswx+1/2=2sin(wx-π/6)coswx+1/2=sin(wx-π/6+wx)+sin(wx-π/6-wx)+1/2=sin(2wx-π/6)-s
1、函数可化为f(x)=(√2/2)*sin[2wx+(π/4].===>(2π)/(2w)=π,===>w=1.2、不懂==
条件上有w>0,所以 T=2π/|2w|=π/w=π/2,w=2,不用讨论.所以 f(x)=1/2-√2/2sin(4x+π/4).当4x+π/4=2kπ+π/2时,sin(4x+π/4)=1,f(x
函数可化为f(x)=(√2/2)*sin[2wx+(π/4].===>(2π)/(2w)=π,===>w=1.
你可以利用下面的题照葫芦画瓢
解fx=(sinx+cosx)²+1/2=1+2sinxcosx+1/2=sin2x+3/2故函数的周期T=2π/2=π,当sin2x=1时,f(x)有最大值5/2.
f(x)=cos(2x-π/3)-cos2x=1/2cos2x+√3/2sin2x-cos2x=√3/2sin2x-1/2cos2x=sin(2x-π/6)最小正周期T=2π/2=π(2)0
f(x)=cos^2ωx+sinωx×cosωx-1/2=1/2(cos2wx+1)+1/2sin2wx-1/2=1/2sin2wx+1/2cos2wx=√2/2(sin2wxcosπ/4+cos2w
(1)f(x)=sinwx•coswx+sin^2wx-1/2=1/2sin2wx-1/2cos2wx=√2/2sin(2wx-π/4)相邻两个零点间的距离为π/2故T=π所以2w=2w=
f(x)=a*b=2√3cos方wx+2sinwxcoswx=√3(1+cos2wx)+sin2wx=√3+2(√3/2cos2wx+1/2sin2wx)=√3+2sin(2wx+π/3)因为f(x)
f'(x)=2x+a>0x>-a/2-a/2=-2a=4
1.(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2
f(x)=sin2x+cos2x=√2sin(2x+π/4)最小正周期T=2π/2=π最大值为√2再问:题目都不一样再答:哪不一样?2sinxcosx可化为sin2x呀。