已知函数fx等于lnx-x2 x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:47:31
已知函数fx等于lnx-x2 x
已知函数fx=lnx-ax^2+(2-a)x 讨论函数的单调性!

答:f(x)=lnx-ax²+(2-a)x,x>0求导得:f'(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=-(2x+1)(ax-1)/x因为:x>0所以:

已知函数fx)=lnx+a/x,若f(x)

设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可

已知函数fx=x^2/2+lnx 求fx在区间(1,e)上的最大值最小值

1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx等于x的三次方+a(lnx-1).当a等于1时 求曲线y=fx在x=1处的切线方程

因为f(x)=x³+a(lnx-1)1、a=1时,f(x)=x³+lnx-1f`(x)=3x²+1/x所以f`(1)=3+1=4f(1)=1³+ln1-1=0于

已知函数fx=ax+lnx ( a属于R)

(1)f'(x)=2+1/xf'(1)=3就是切线的斜率(2)f'(x)=a+1/x令a+1/x=0,x=-1/a当a>=0时,f'(x)>0,在x>0范围内单调递增,当a-1/a时函数递增0

已知函数fx=ax减x平方减lnx ,a属于R 当a等于零时 判断fx的单调性 急

当a=0的时候f(x)=-x^2-lnxf'(x)=-2x-1/x令f'(x)=0得到=-2x-1/x=0,无解显然在(-∞,0)f'(x)>0在(0,+∞)f'(x)

已知函数fx =(x-a)lnx

fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a

已知函数fx=lnx+(1/x)-1 (1)求函数fx的单调区间

求导让导数等于零让后解方程注意x要大于零不符合的解舍掉让后在(0,+无穷)上根据导数的正负情况讨论增减区间.

已知函数fx=px-p/x-2lnx

令hx=fx-gx,x在[1,e]上hx恒小于0则hx=px-p/x-2lnx-2e/xh'x=p+p/x^2-2/x+2e/x^2=p(1+1/x^2)+(2e-2x)/x^2因为p>0,x在[1,

已知函数fx=x+a^2/x-3,gx=x+lnx,其中a>0,Fx=fx+gx

1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解

已知函数fx=lnx-a(x-1) 1、fx的单调性.

函数的定义域(0,+oo),f'(x)=1/x-a;当a

已知函数fx=lnx-ax2+(2-a)x 讨论fx单调性.

f(x)=lnx-ax²+(2-a)x,x>0f′(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=(2x+1)(1-ax)/x=(2+1/x)(1-ax)因为

已知函数fx=lnx+2a/x+1

1、对lnx知,x>0对f求导得:f'=1/x-2a/(x^2)f'>=0时,x>2a如果a0,无单减区间如果a>=0,则f的单增区间为x>=2a,此时单减区间为0

已知函数fx等于x^2 ax

f'(x)=2x+a>0x>-a/2-a/2=-2a=4

已知函数fx=lnx-ax(x>1)求fx单调区间

f'(x)=1/x-ax>1,所以00即证umin(a)=u(1/e)=x/lnx-lnx+x/e-2>0恒成立.令t(x)=x/lnx-lnx+x/e-2(x>1)令t'(x)=(lnx-1)/ln