已知函数fx等于a㏑x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:28:32
因为是对于a属于[-1,1]恒成立,所以应看作是关于a的函数,而在本式中可以看作是关于a的一次函数,要使得大于0恒成立,只要让a=-1,a=1都成立即可.所以x^2+2x-1>0;-x^2+2x+1>
设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可
加一分之一?f(x)是奇函数,就可以得到f(0)=0你把这个x=0带入就可以啦再问:好吧,谢谢你再答:如果这个方法不行,就用f(-x)=-f(x)一般都可以解决
恒成立问题分离常数再问:具体再问:求过程再答:在写再答:等下再答:再答:再答:如果满意请采纳再问:等会再答:我这个是对的再答:可以相信我再问:㏑x能做分母吗再答:可以再问:如果x=1呢再答:x=1a属
当a=0的时候f(x)=-x^2-lnxf'(x)=-2x-1/x令f'(x)=0得到=-2x-1/x=0,无解显然在(-∞,0)f'(x)>0在(0,+∞)f'(x)
f(x)的值大于并等于二分之一再答:对不起我看错了,应该是求x的范围再答:再问:谢了再答:不用再答:有不会的题目尽管找我,我是复读生,我需要锻炼!不过帮不上忙的话请不要x我喔!哈哈
(1)当a=0时,f(x)=|x|x,f(-x)=-|x|x=-f(x),所以f(x)为奇函数;当a≠0时,f(x)=|x|(x-a),f(-x)=-|x|(x+a)≠-f(x),且f(-x)=-|x
fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a
[-3,3](也就是关于原点对称的最大定义域)
f(x)=√(4x-1)+√(3-4x)定义域A:4x-1>=0且3-4x>=0x>=1/4且x
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
当x≤1时f(x)=3x=2x=2/3当x>1时f(x)=-x=2x=-2因为x>1,所以则时无解所以x=2/3再问:那个是3x方再答:额.f(x)=3x^2=2x^2=2/3x=±√6/3±√6/3
1、对lnx知,x>0对f求导得:f'=1/x-2a/(x^2)f'>=0时,x>2a如果a0,无单减区间如果a>=0,则f的单增区间为x>=2a,此时单减区间为0
f'(x)=1-a/x=(x-a)/xf(x)的定义域是x>0谈论a的取值范围a0此时f'(x)恒>0f(x)单调递增,没有极值当a>0时令f'(x)>=0x>=a∴f(x)增区间是[a,+∞)减区间
正负根号2再答:再答:看懂没
f'(x)=2x+a>0x>-a/2-a/2=-2a=4
取a=b=0得f(0)=0,取a=x,b=-x得f(x)+f(-x)=0,故f(-x)=-f(x),所以是奇函数