已知函数fx是定义域在r上的偶函数,且在区间(负无穷,o)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:50:03
奇函数则f(0)=0x0所以f(-x)=-x³+x+1所以f(x0=-f(-x)=x³-x-1所以f(x)=x³-x-1,x0再问:答案确定吗再答:嗯
这个函数的奇函数,则:f(-x)=-f(x)当x0,得:f(-x)=[-x]×[5-(-x)]+1=-x(x+5)+1即:当x
当x=0(-x就可以带入f(x)的解析式了)因为fx是定义域在R上的奇函数所以f(x)=-f(-x)=-[-x(a+(-x))]解得f(x)=ax-x^2注:(x^2:x的平方)
(1)令t=log2x,则x=2^t,所以f(t)=2^t+a/2^t,所以f(x)=2^x+a/2^x,(2)因为f(x)是偶函数,所以f(x)=f(-x),所以2^x+a/2^x=2^-x+a/2
令x=y=0f(0)=2f(0)f(0)=0令y=-xf(0)=f(x)+f(-x)=0f(x)=-f(-x)是奇函数f(2)=f(1)+f(1)=2f(2a)>f(a-1)+2=f(a-1)+f(2
定义域为x>0在定义域单调增,即f'(x)>=0恒成立f'(x)=a+(1-lnx)/x^2>=0a>=(lnx-1)/x^2=g(x)现求g(x)的最大值.由g'(x)=[x-2x(lnx-1)]/
x>0x²-1>0(x+1)(x-1)>0所以x>1x=0奇函数则f(0)=0所以不成立x0所以f(-x)=(-x)²-1所以f(x)=-f(-x)=-x²+1>0x
根据题目,得知x>0,且f(x)导数为1/x+2x+a,要求函数f(x)在其定义域上为增函数,则要求1/x+2x+a,在x>0的情况下恒大于0,即最小值大于0,g(x)=1/x+2x+a,它的导数为-
答:f(x)是定义在R上的奇函数则有:f(-x)=-f(x),f(0)=0f(x+2)=-f(x)=f(-x)f(3)=f(1+2)=-f(1)=-1f(4)=f(2+2)=-f(2)=-f(0+2)
因为是奇函数有f(-x)=-f(x)当x小于等于0的时候-x就大于等于0f(-x)=-f(x)=(-x)^2+2(-x)=x^2-2x所以在r上的表达式为:f(x)=-x^2-2x(x≤0)=x^2-
根据奇函数的定义取任意取两个x值得到两个方程解一下就可知道AB值,定义域的证明可以用单独函数的定义域为R和函数的定义域也为R(函数的四则运算)
f(x)=ax^2+x-xlnx(a>0)定义域是x>0f'(x)=2ax+1-lnx-1 =2ax-lnxf(x)在定义域上是单调函
取任意x1则-x1>-x2>0因为f(x)在(0,+∞)上是增函数所以f(-x1)>f(-x2)又因为f(x)是定义域是R的偶函数所以f(-x1)=f(x1),f(-x2)=f(x2)所以f(x1)>
设x》0则-x《0所以f(-x)=x2-(-2X)=x2+2x=f(x)
求导fx’=3ax^2-6x=0,x=1带入,a=2
证明:任取x10因为:fx在(0,到正无穷)上是减函数所以:f(-x1)
由题意:2aa
解题思路:本题目考察函数奇偶性,列方程带入数值解得方案。解题过程:附件