已知函数fx是定义在-1,3上的减函数,且函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:21:08
已知函数fx是定义在-1,3上的减函数,且函数
已知函数fx 是定义在R上的奇函数,当x大于等于0时,fx=x(1+x) ,求函数的解析式

当x小于0时,f(-x)【-x大于0】=(-x)(1-x)【这个是根据定义式推导的】,而f(-x)=-f(x)所以,f(x)=x(1-x)【x小于0】

已知函数y=fx是定义在r上的奇函数,当x>0时,fx=3的(x-1)次方 1)求函数y=fx在r上的解析式

1、奇函数f(0)=0x0所以f(-x)=3^(-x-1)所以f(x)=-f(-x)=-3^(-x-1)所以f(x)=-3^(-x-1),x02、x1,x²-x>0f(2)=3因为x>0时f

设fx是定义在r上的函数,对任意xy属于R,恒有fx+y=fx+fy (3)若函数fx在R上是增函数,已知f1=1,且.

令x=y=0f(0)=2f(0)f(0)=0令y=-xf(0)=f(x)+f(-x)=0f(x)=-f(-x)是奇函数f(2)=f(1)+f(1)=2f(2a)>f(a-1)+2=f(a-1)+f(2

已知fx是定义在R上的偶函数,且f(1)=0,设f'x是函数fx的导函数

答:定义在R上的偶函数f(x)有:f(-x)=f(x)所以:f(-1)=f(1)=0因为:[xf'(x)-f(x)]/x^2

已知函数fx是定义在[-e,0) (0,e]上的奇函数 当x属于(0,e]时 fx=ax+Inx (1)求f(x)

(1)当x∈[-e,0)时,-x∈(0,e],f(x)=-f(-x)=-a(-x)-ln(-x)=ax-ln(-x)(2)当x∈[-e,0)时,f(x)=ax-ln(-x),f'(x)=a-1/x当a

已知fx是定义在R上且周期为3的函数,当x属于【0,3)时,fx=|x^2-2x+1/2|若函数y=fx-a在区间【-3

你先把f(x)图像画出来,零点就是f(x)=a时候的解,就是y=a这条直线和你画出来的图像的交点,有10个,应该有对称的

已知函数y=fx是定义在r上的奇函数,x>0,fx=x*lg(1+x),求x

x0,∴f(-x)=(-x)*lg(1-x)=-x*lg(1-x)∵f(x)是奇函数∴f(x)=-f(-x)=x*lg(1-x)

已知定义在R上的函数fx满足f(x+2)f(x)=1,求证fx是周期函数

证明由f(x+2)f(x)=1得f(x+2)=1/f(x).(*)则f(x+4)=f(x+2+2).(利用*式)=1/f(x+2).(再次利用*式)=1/[1/f(x)]=f(x)故f(x+4)=f(

已知幂函数fx=x的2+m次方 是定义在区间(m,4/3)上的偶函数,则fx的单调递增区间是

解题思路:f(x)为偶函数,定义域关于原点对称,求m=-4/3,求f(x)的指数为2/3,x大于等于0,递增,奇偶性做图象解题过程:

已知函数fx是定义在R上的奇函数,当x>0时,fx= 1-2的-x次方,则不等式fx

解题思路:分析:先求f(x)的解析式,而题中已给出x>0时的表达式,故先由函数的奇偶性可得x<0和x=0时函数f(x)的解析式,之后再分别解两个不等式.解题过程:

已知fx是定义在零到正无穷大上的增函数,且满足fxy=fx+fy,f2=1 求证f8=3 求不等式

在f(xy)=f(x)+f(y)中,令x=y=2,得f(4)=f(2)+f(2)=2再令x=4,y=2,得f(8)=f(4)+f(2)=2+1=3于是,不等式f(x)-f(x-2)>3可化为f(x)>

已知函数fx是定义在负2,2上的奇函数,且是减函数

f(m-1)+f(1-2m)>=0,由于f(x)为奇函数,所以上式相当于f(m-1)>=f(2m-1),又f(x)是定义在(-2,2)上的奇函数,且单调递减.所以m-1=0(1),m-1(3).综合(

已知函数fx是定义在(0,正无穷)上的减函数且满足fxy=fx+fy,f(1/3)=1

我怎么看不到问题...再问:(1)求f(1)(2)若fx+f(2-x)2,后面自己能解了吧。

已知函数fx=1+1/x 【1】用定义证明fx在0正无穷上为减函数【2】判断函数fx的奇偶性

【1】f(x)=1+1/x,令X2>X1>0f(x2)-f(x1)=1/X2-1/X1=(X1-X2)/X1X2<0,∴f(x)在(0,+∞)为减函数.【2】f(-x)=1-1/x既

已知定义在(-2 2)上的函数fx是减函数,且f(1-a)

-2再问:要过程!再答:∵f(x)是定义在(-22)上的函数∴-2

已知函数fx一定义在R上的奇函数

解题思路:本题目考察函数奇偶性,列方程带入数值解得方案。解题过程:附件

已知fx是定义在R上的奇函数,在(0,+∞)是增函数,且f1=0,则fx+1<0的解集为-----

图像可理解为上图.那么f(x)的解集为(-∞,-1),(0,1)则f(x+1)<0的解集为:(-∞,-2),(-1,0)

已知定义在R上函数fx满足f(x+1)=3x+1 求函数fx解析式

令y=x+1,则f(y)=3(x+1)-2=3y-2即f(x)=3x-2再问:爲什麽是f(y)=3(x+1)-2再答:y=x+1,所以f(y)=f(x+1)=3(x+1)-2=3y-2再问:爲什麽是-