已知函数fx=x的3次方 ax的平方 bx c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:13:42
答:f(x)=lnx-ax²+(2-a)x,x>0求导得:f'(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=-(2x+1)(ax-1)/x因为:x>0所以:
1.设x0当x>0时,fx=2的x次方-3×2的-x次方,所以f(-x)=2的-x次方-3×2的x次方函数fx是定义在R上的奇函数,所以f(-x)=-f(x)所以x0)f(x)=0(x=0)-2的-x
求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点
f'(x)=3x²-2ax+3=0在[1,+∞)上是增函数,有两种可能:(1)3x²-2ax+3恒≥0∆=4(a²-9)≤0,-3≤a≤3(2)3x²
你可以给潇打电话~她会做
2^x+k*2^-x>2^-xk>(2^-x-2^x)/2^-xk>1-2^2x当x=0,k最大值0,当x>0,k0再问:谢谢。可以告诉我fx的图像是什么样的吗?再答:大概这个样,我用画板画了下再问:
f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00
这是复合函数求导么首先把ab分别带入fx得到fx=-x³+2接着对(2x+1)求导得到2,对fx求导得到-3x²,再利用复合函数求导法则得到答案-8x³-3x²
一、如果学习过求导数,那么可以知道当f'(x)>0时,函数严格单调递增,如果f'(x)≥0,函数单调递增.单调递减与严格单调递减类似可知.所以对于本题,有f'(x)=3x²-a≥0.因为在R
因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得
1】由题意求导f‘(x)=2xe^(x-1)+x^2*e^(x-1)+3ax^2+2bxf'(-2)=f'(1)=0代入得a=-1/3b=-12】f(x)=x^2*e^x-x^3/3-x^2设F(x)
f(x)'=2x*e^(x-1)+x^2*e^(x-1)+3ax^2+2bx因为:X=-2和X=1为f[x]的极点:f(-2)'=0f(1)'=0解得:a=-1/3,b=-1.所以:f(x)'=(2x
f(x)=4^x-2^(x+1)+2=(2^x)^2-2*2^x+2设t=2^x>0∴f(t)=t^2-2t+2对称轴是t=2/2=1(1)f(x)=10t^2-2t+2=10t^2-2t-8=0(t
再问:第一问为什么是之间,而不是正负无穷再答:我怎么觉得我写的是不是之间呀==
f'(x)=e^x·(x²-3x+2)=e^x·(x-1)(x-2),当x∈(1,2)时,f'(x)<0,所以f(x)单调递减,即单调递减区间是(1,2)单调递增区间是(-∞,1),(2,+
1.g(x)+f(x)=x^(1/2)----(1).g(x)-f(x)=x^(-1/2)---(2).(1)+(2):2g(x)=x^(1/2)+x^(-1/2).g(x)=(1/2)[x^(1/2
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
过P2=-a+b/ef'(x)=a+be^x斜率=-3f'(-1)=a+b/e=-3相加2b/e=-1b=-e/2a=-5/2f(x)=-5x/2-(e/2)*e^x