已知函数fx=xlnx,若直线l过点0.-1并且

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:50:23
已知函数fx=xlnx,若直线l过点0.-1并且
已知函数f x= xlnx求函数fx在[1,3]上的最小值

x属于(0,正无穷),f'(x)=lnx+1在(0,正无穷)上f'(x)>0,f(x)是增函数x=1时f(x)取到最小值f(1)=1*ln1=0

已知函数fx)=lnx+a/x,若f(x)

设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可

已知函数y=xlnx,求这个函数的导数

这是复合函数求导Fx'=1Flnx'=1/x所以y'=lnX+1/X

已知函数f(x)=ax2+x-xlnx,

(1)当a=0时,f(x)=x-xlnx,函数定义域为(0,+∞).f'(x)=-lnx,由-lnx=0,得x=1.-------------(3分)x∈(0,1)时,f'(x)>0,f(x)在(0,

已知函数FX=aX^2+X-XLNX(a>0),若函数FX在定义域上是单调函数,求实数a的取值范围

f(x)=ax^2+x-xlnx(a>0)定义域是x>0f'(x)=2ax+1-lnx-1    =2ax-lnxf(x)在定义域上是单调函

已知直线L y=3x-e是函数f(x)=ax+ xlnx图像的切线

(1)f'(x)=a+lnx+1f'(t)=a+lnt+1=3lnt=2-at=e^(2-a)f(t)=at+t*lnt=3t-ea*e^(2-a)+(2-a)*e^(2-a)=3e^(2-a)-ee

已知函数fx=xlnx+ax^2,a€r

1)f'(x)=lnx+1+2axf'(1)=1+2af(1)=a在此在点(1,f(1))处的切线为y=(1+2a)(x-1)+a代入原点(0,0),得0=-(1+2a)+a,解得;a=-12)在(0

已知函数fx=xlnx 1求函数的极值点 2设直线l过点0,1于曲线y=fx相切,求直线l 的方程

1求导数f`x=lnx+1所以x=1/e时为取得极小值2设方程为y=kx+1代入y=fx=xlnxk=lnx-1/x切点处斜率相等lnx+1=lnx-1/x无解!

已知函数fx=xlnx,gx=x∧3+ax∧2-x+2.如果函数gx得单调区间为(-1/3.1求函数gx得解析式)2.如

(1)如果函数g(x)的单调递减区间为(-1/3,1),求函数g(x)的解析式(2)在(1)的条件下,求函数y=g(x)的图像过点p(1,1)的切线方程(3)对一切的x属于(0,+无穷),2f(x)小

已知函数fx=xlnx,gx=1/3ax2-bx,其中a,b属于R 1)若f(x)≥-x2+ax

(1)当a=3,b=-1时,求函数f(x)的最小值;(2)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围.

已知函数fx=2sin(wx+6/π)(w>0),若函数fx的图像与直线y=√2两个相邻交点的最短距离等于π,则w=

fx=2sin(wx+6/π)得到sin(wx+6/π)=√2/2令wx1+6/π=π/4wx2+6/π=3π/4则x2-x1=π两式相减得到w=1/2再问:为什么设π/4和3π/4呢?再答:这个是随

已知函数f(x)=xlnx

已知函数f(x)=xlnx1、若函数G(x)=f(x)+x^2+ax+2有零点,求实数a的最大值2、若任取x大于0,f(x)/x小于等于x-kx^2-1恒成立,求实数k的取值范围(1)解析:∵函数f(

已知函数f(x)=xlnx,求极值点

f'(x)=lnx+1令f'(x)=0x=1/e(0,1/e)f'(x)

已知函数f(x)=xlnx,则f(x)

f(x)对x求导得df(x)/dx=lnx+1df(x)/dx>0有x>e分之1,原函数在这个区间单增df(x)/dx

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数fx=xlnx 1.若函数gx=fx+x²+ax+2有零点,求实数a的最大值

已知函数f(x)=xlnx1、若函数G(x)=f(x)+x^2+ax+2有零点,求实数a的最大值2、若任取x大于0,f(x)/x小于等于x-kx^2-1恒成立,求实数k的取值范围(1)解析:∵函数f(

已知函数f(x)=xlnx.

(Ⅰ)由f(x)=xlnx,可得f'(x)=lnx+1,(2分)当x∈(0,1e)时,f'(x)<0,f(x)单调递减;当x∈(1e,+∞)时,f'(x)>0,f(x)单调递增.所以函数f(x)在[1

已知函数f(x)=xlnx

/>(1)对函数f(x)=xlnx求导得:f'(x)=lnx+1令lnx+1=0,x=1/e当x>1/e时,f'(x)>0当01时,g'(x)>0,即g(x)在x≥1时单调递增,最小值为g(1)=1所

已知函数fx=ax-lnx-3,若函数fx在x∈[e-4次方,e]上的图像与直线y=t(0≤t≤1)恒有两个不同交点,求

过P2=-a+b/ef'(x)=a+be^x斜率=-3f'(-1)=a+b/e=-3相加2b/e=-1b=-e/2a=-5/2f(x)=-5x/2-(e/2)*e^x