已知函数fx=xlnx 求函数极值点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:28:06
用求导吧,查查求导公式就可以了.f(x)=(lnx/x)-x=此函数的定义域(0,+∞)求导得:f'(x)=[(1-lnx)/x^2]-1=(1-lnx-x^2)/x^2(x>0)当且仅当1-lnx-
x属于(0,正无穷),f'(x)=lnx+1在(0,正无穷)上f'(x)>0,f(x)是增函数x=1时f(x)取到最小值f(1)=1*ln1=0
fx'=ex(2x+a)+ex(x2+ax+1)=ex(x2+(2+a)x+a+1)=ex(x+a+1)(x+1)令fx'=0得x1=-a-1,x2=-1ex>01)a=0fx是增函数无极值2)a>o
函数的定义域为(0,+∞)求导函数,可得f′(x)=1+lnx令f′(x)=1+lnx=0,可得x=1e∴0<x<1e时,f′(x)<0,x>1e时,f′(x)>0∴x=1e时,函数取得极小值,也是函
这是复合函数求导Fx'=1Flnx'=1/x所以y'=lnX+1/X
f(x)=ax^2+x-xlnx(a>0)定义域是x>0f'(x)=2ax+1-lnx-1 =2ax-lnxf(x)在定义域上是单调函
1)f'(x)=lnx+1+2axf'(1)=1+2af(1)=a在此在点(1,f(1))处的切线为y=(1+2a)(x-1)+a代入原点(0,0),得0=-(1+2a)+a,解得;a=-12)在(0
1求导数f`x=lnx+1所以x=1/e时为取得极小值2设方程为y=kx+1代入y=fx=xlnxk=lnx-1/x切点处斜率相等lnx+1=lnx-1/x无解!
(1)如果函数g(x)的单调递减区间为(-1/3,1),求函数g(x)的解析式(2)在(1)的条件下,求函数y=g(x)的图像过点p(1,1)的切线方程(3)对一切的x属于(0,+无穷),2f(x)小
x属于(0,正无穷),f'(x)=lnx+1在(0,正无穷)上f'(x)>0,f(x)是增函数x=1时f(x)取到最小值f(1)=1*ln1=0
f(x)定义域为x>0f'(x)=lnx+1当0再问:0∠x
已知函数f(x)=xlnx1、若函数G(x)=f(x)+x^2+ax+2有零点,求实数a的最大值2、若任取x大于0,f(x)/x小于等于x-kx^2-1恒成立,求实数k的取值范围(1)解析:∵函数f(
f`(x)=lnx+1
F(x)=G(x)H(x)F'(x)=G'(x)H(x)G(x)H'(x)所以y=1*lnxx*1/x=lnx1爪机打字不容易,求采纳
f'(x)=lnx+1令f'(x)=0x=1/e(0,1/e)f'(x)
已知函数f(x)=xlnx1、若函数G(x)=f(x)+x^2+ax+2有零点,求实数a的最大值2、若任取x大于0,f(x)/x小于等于x-kx^2-1恒成立,求实数k的取值范围(1)解析:∵函数f(
/>(1)对函数f(x)=xlnx求导得:f'(x)=lnx+1令lnx+1=0,x=1/e当x>1/e时,f'(x)>0当01时,g'(x)>0,即g(x)在x≥1时单调递增,最小值为g(1)=1所
x>0f'(x)=lnx+x*1/x-1=lnx=0x=1当x>1,f'(x)>0,f(x)单调递增当0
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
先求f(x)的定义域x>0,再求导f'(x)=(xlnx)'=1lnx+x*1/x=lnx+1lnx+1=0,f(x)是增函数.