已知函数fx=sinwx-六分之π在 0,3分之4π单调增加
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:45:19
已知函数f(x)=2sinwx(w>0)在区间[-π/3,π/4]上的最小值是-2,则w的最小值等于多少?解析:∵函数f(x)=2sinwx(w>0)在区间[-π/3,π/4]上的最小值是-2函数f(
fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma
f(x)=(√3/2)sin2wx-(1/2)cos2wx-(1/2)=sin(2wx-π/6)-(1/2).周期T=2π/|w|=π,则w=1;此时f(x)=sin(2x-π/6)-(1/2)增区间
f(x)=(√3sinwx-coswx)coswx+1/2=2sin(wx-π/6)coswx+1/2=sin(wx-π/6+wx)+sin(wx-π/6-wx)+1/2=sin(2wx-π/6)-s
1、函数可化为f(x)=(√2/2)*sin[2wx+(π/4].===>(2π)/(2w)=π,===>w=1.2、不懂==
a·b=-(coswx-sinwx)(coswx+sinwx)+√3sin(2wx)=√3sin(2wx)-cos(2wx)=2sin(2wx-π/6)故:f(x)=2sin(2wx-π/6)+λ关于
条件上有w>0,所以 T=2π/|2w|=π/w=π/2,w=2,不用讨论.所以 f(x)=1/2-√2/2sin(4x+π/4).当4x+π/4=2kπ+π/2时,sin(4x+π/4)=1,f(x
你可以利用下面的题照葫芦画瓢
fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a
f(x)=cos^2ωx+sinωx×cosωx-1/2=1/2(cos2wx+1)+1/2sin2wx-1/2=1/2sin2wx+1/2cos2wx=√2/2(sin2wxcosπ/4+cos2w
f(x)=(sinwx)^2+根号3sinwx*coswx+2(coswx)^2=1+根号3/2sin(2wx)+[cos(2wx)+1]/2=sin(2wx+π/6)+3/2当x=π/6有第一个最高
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
(1)∵f(x)=cos²ωx-sin²ωx+2√3sinωxcosωx=cos2ωx+√3sin2ωx=2sin(2ωx+π/6)又题意可得T=π,∴ω=1,∴f(x)=2sin
解由函数y=fx是偶函数,在x属于(0,正无穷)上递减,则函数y=f(x)在x属于(负无穷大,0)是增函数,即当x1,x2属于(负无穷大,0)且x1<x2时,f(x1)<f(x2),且f(x1),f(
第一题A.第二题B
(1)f(x)=sinwx•coswx+sin^2wx-1/2=1/2sin2wx-1/2cos2wx=√2/2sin(2wx-π/4)相邻两个零点间的距离为π/2故T=π所以2w=2w=
f(x)=a*b=2√3cos方wx+2sinwxcoswx=√3(1+cos2wx)+sin2wx=√3+2(√3/2cos2wx+1/2sin2wx)=√3+2sin(2wx+π/3)因为f(x)
解当x≥1时,得x-1≥0,即f(x-1)=1此时不等式xf(x-1)≤1转化为x*1≤1即x≤1此时xf(x-1)≤1的解x=1当x<1时,x-1<0即f(x-1)=-1此时不等式xf(x-1)≤1
f(x)=a*b=(2sinwx,coswx+sinwx)*(coswx,coswx-sinwx)=(2sinwx)*(coswx)+(coswx+sinwx)*(coswx-sinwx)=2sinw