已知函数fx=e^x x,gx=(ax) (1 x) 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:27:38
f(x)-g(x)=1-x^2-x^3以-x代入上式得:f(-x)-g(-x)=1-x^2+x^3,即-f(x)-g(x)=1-x^2+x^3两式相加再除以2得:-g(x)=1-x^2,得:g(x)=
很高兴为你虽然f(x),g(x)表达式一样,但定义域不同,是两个不同的函数那么:f(x)=x^2-2x=(x-1)^2-1,表示开口向上,顶点在(1,-1),对称轴为x=1的抛物线,因此函数f(x)在
选C,假设在x0>0处函数取得最大值,令x
(1)当a=1时,f(x)=x-lnx.f'(x)=1-1/x.(即对f(x)求导).f'(x)=0时,得x=1,即此时f(x)取得极值.f''(x)=1/x^2>0.所以x=1为f(x)的极小值.带
f(x)=loga(x+1),f(x)的定义域为x>-1g(x)=loga(1-x),g(x)的定义域为x
a>0,且a≠1f(x)=loga(x+1)g(x)=√(1-x)f(x)+g(x)=loga(x+1)+√(1-x)零和负数无对数,x+1>0,x>-1根号下无负数,1-x≥0,x≤1定义域:(-1
h(x)=f(x)-g(x)=Inx+a/x-3/2h(x)'=1/x-a/x^2若a>=eh(x)'=0解出a>=e/2,综合前提条件a>=e若0=e^(1/2)综上,a>=e^(1/2)
f到底是e的x^2次方还是x^2/e呢?我就按照后者计算了.首先,定义域(0,+∞)F(x)=x^2/e-2alnxF'=2x/e-2a/xa≤0时,F‘>0,F单调递增,无最值a>0时,F在(0,√
再问:...好像不太对
由已知函数f(x)=lnx,定义域x>0;函数g(x)=ax2/2+bx,若a=-2,那么g(x)=-x2+bx;所以函数h(x)=f(x)–g(x)=lnx–(-x2+bx)=lnx+x2–bx,定
(1)∵f(x)是奇函数,g(x)是偶函数∴f(-x)=-f(x),g(-x)=g(x)∵f(x)-g(x)=1/(x+1)①∴f(-x)-g(-x)=1/(1-x)-f(x)-g(x)=1/(1-x
g’(x)=(lnx-1)/(lnx)^2f’(x)=g’(x)-a因为函数f(x)在(1,+∞)上为减函数,故当x>1时,f’(x)≤0恒成立,即g’(x)≤a恒成立,令h(x)=g’(x)由h(x
x+1>0=>x>-1①3x+2>0=>x>-2/3②g(x)>=f(x)=>g(x)-f(x)>=0即log2[(3x+2)/(x+1)]>=0所以(3x+2)/(x+1)>=1解得x>=-1/2③
1)h(x)=2x=f(x)+g(x)1)以-x代入x,得:h(-x)=-2x=f(-x)+g(-x),因f(-x)=f(x),g(-x)=-g(x),所以此式化为:-2x=f(x)-g(x)2)1)
1.g(x)+f(x)=x^(1/2)----(1).g(x)-f(x)=x^(-1/2)---(2).(1)+(2):2g(x)=x^(1/2)+x^(-1/2).g(x)=(1/2)[x^(1/2
1、g(x)=x+e^2/x>=2e,在x=e时取等号.(x>0)故m>=2e时,函数有零点.2、直接画图,g(x)是对勾函数,在x=e时,有最小值,f(x)是以x=e为对称轴的,开口向下的抛物线,这
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
1.∵f(x)=x分之lnx+a∴f'(x)=(1-lnx-a)/x^2令f'(x)=0,得驻点x=e^(1-a).x=e^(1-a)时,极大值f(x)=1/(e^(1-a))=e^(a-1)2.①∵
因f1=2所以m=1易知fx为奇函数所以F(-x)=f(-x)Xg(-x)=f(x)Xg(x)=F(x)所以F(x)为偶函数
答:f(x)=x^2+ax,g(x)=lnxy=f(x)-g(x)=x^2+ax-lnxy'=2x+a-1/x因为:y''=2+1/x^2>0所以:y'=2x+a-1/x是增函数y在[1,2]上是减函