已知函数FX=ex(x三次方 mx平方-2x 2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 22:42:23
f'(x)=[2xe^x-x²e^x]/(e^x)²=(2x-x²)/(e^x)∴(-∞,0)单调递减,(0,2)单调递增;(2,+∞)单调递减∴极小值是f(0)=0极大
f'(x)=3x^2-8x=x(3x-8)=0--->x=0,8/3f(8/3)=512/27-256/9=-256/27为极小值f(0)=0为极大值f(4)=64-64=0因此最大值为0,最小值为-
求导做.fx导数=3x^2-8x当导数=0,x=0或8/3当0《x《8/3,导数《0,单调递减;同理得递增区间所以在区间0:4,可做出图像,算x=0,8/3,4这三值,进行比较得出答案
f'(x)=3x^2-8x=x(3x-8)=0--->x=0,8/3f(8/3)=512/27-256/9=-256/27为极小值f(0)=0为极大值f(4)=64-64=0因此最大值为0,最小值为-
m=1,最大=2/3,最小=-2/3对f(x)=1/3x^3-mx求导得f'(x)=x^2-m因为x=1时有最值,所以当x=1时,f'(x)=0,即1-m=0,得m=1因为f'(x)=x^2-1=0时
函数fx=1/3x三次方-ax方+1得:f'(x)=x方-2ax令f'(x)=0得:x=0,x=2a又a>0,函数y=fx在区间(a,a方-3)上存在极值,则a
不懂可以追加.
fx'=ex(2x+a)+ex(x2+ax+1)=ex(x2+(2+a)x+a+1)=ex(x+a+1)(x+1)令fx'=0得x1=-a-1,x2=-1ex>01)a=0fx是增函数无极值2)a>o
解题如下:f'=3x²+2ax-1把x=2/3代入得a=4/3+4a/3-1,解得a=-1f=x^3-x²-x+cf'=3x²-2x-1令f'=0,解得x=-1/3或者x
f′(x)=3x²+4x+m=3(x+2/3)²+m-4/3;∵在区间(负无穷,正无穷)单调递增∴f′(x)>0恒成立;∵(x+3/2)²≥0;∴m-4/3>0;∴m>4
①a=3fx=1/3x立方-3lnx-1/3f'x=x平方-3/x斜率=1-3=-2f(1)=1/3-0-1/3=0所以切线方程为y-0=-2(x-1)即y=-2x+2②f'(x)=x
g(x)=x³-3x²-9x+3-mg'(x)=3x²-6x-9=3(x-3)(x+1),得极值点x=3,-1g(3)=-24-m为极小值;g(-1)=8-m为极大值端点
(1)f(x)=x^3-mx^2,f'(x)=3x^2-2mx,f'(1)=3-2m=1/3,m=4/3.f(x)=x^3-4x^2/3(2)f'(x)=3x^2-8x/3=x(9x-8)/3当x≤0
解题思路:先求出函数的导数,通过讨论m的范围从而得到函数的单调区间。解题过程:
x>0时,f(x)=2x³+mx²+(1-m)xx
f(x)=x^3+2x^2+x>=ax^2=>x^3+(2-a)x^2+x>=0对于R+恒成立因为x>0,所以只要g(x)=x^2+(2-a)x+1>=0对于R+恒成立抛物线g(x)当x>0的时候g(
解析:∵F(X)=X^3-2eX^2+mX-lnX ,记G(X)=F(X)/X则g(X)=X^2-2eX+m-lnX/x令G ‘(X)=2X-2e+(lnX-1)/x^2=0==&
(1)当t=1时,f(x)=4x^3+3x^2-6xf'(x)=12x^2+6x-6f'(0)=-6,即曲线在(0,f(0))处切线的斜率k=-6f(0)=0,即切线过(0,0)点.故切线方程为y=-
1、g(x)=x+e^2/x>=2e,在x=e时取等号.(x>0)故m>=2e时,函数有零点.2、直接画图,g(x)是对勾函数,在x=e时,有最小值,f(x)是以x=e为对称轴的,开口向下的抛物线,这
∵f(x)=x^3-x而f(-x)=-x^3+x=-(x^3-x)=-f(x)即f(-x)=-f(x)∴f(x)=x^3-x是奇函数