已知函数fx=ax2 2ax 1在区间[-1,2]上的最大值为4,求实数a的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:57:01
已知函数fx=ax2 2ax 1在区间[-1,2]上的最大值为4,求实数a的值
已知函数fx=1/x²+1.判断函数fx在区间(0+∞)上的单调性并证明.求fx在区间[1,

解判断函数fx在区间(0+∞)上单调递减设x1,x2属于(0,正无穷大)且x1<x2则f(x1)-f(x2)=1/(x1^2+1)-1/(x2^2+1)=(x2^2-x1^2)/(x1^2+1)(x2

已知函数fx 满足fx+fy=f(x+y)+2 当x>0时,fx>2 求fx在R上是增函数

证明:任取R上的x1,x2,且x12,所以f(x2-x1)>2,f(x2-x1)-2>0所以f(x2)-f(x1)>0所以f(x1)

已知函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值,且函数fx只有一个零点,求b

解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)

已知函数fx的定义域为(0,+∞),且fx在定义域上为增函数,f(xy)=fx+fy

证明f(xy)=fx+fyf(1*1)=f(1)+f(1)f(1)=0∴f(x*1/x)=f(1)=f(x)+f(1/x)f(1/x)=-f(x)∴f(1/y)=-f(y)∴f(x/y)=f(x*1/

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx=根号下x+1,求证fx在定义域上是增函数

函数f(x)=√(x+1)的定义域是x>-1.设任意x1、x2∈(-1,+∞),且x1

已知函数fx对任意x,y∈R,总有fx+fy=fx+y,且当x>0时,fx<0,f(-1)=2 求证:fx在R上是减函数

令x=y=02f(0)=f(0)f(0)=0令y=-xf(x)+f(-x)=f(0)=0f(x)=-f(-x)是奇函数设x2>x1,则x2-x1>0f(x2-x1)

已知函数fx =(x-a)lnx

fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a

已知函数fx=1+1/x 【1】用定义证明fx在0正无穷上为减函数【2】判断函数fx的奇偶性

【1】f(x)=1+1/x,令X2>X1>0f(x2)-f(x1)=1/X2-1/X1=(X1-X2)/X1X2<0,∴f(x)在(0,+∞)为减函数.【2】f(-x)=1-1/x既

已知函数fx=log2(x+1) g(x+1)=log2(3x+2) 求在gx>=fx 成立的条件下 函数y=gx-fx

x+1>0=>x>-1①3x+2>0=>x>-2/3②g(x)>=f(x)=>g(x)-f(x)>=0即log2[(3x+2)/(x+1)]>=0所以(3x+2)/(x+1)>=1解得x>=-1/2③

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

在函数fx=log

答:f(x)和h(x)都关于y轴对称f(x)=lg(1+x²),定义域为实数范围Rf(-x)=lg(1+x²)=f(x),为偶函数,关于y轴对称g(x)=x^(1/2),定义域x>

已知函数y=fx是偶函数

解由函数y=fx是偶函数,在x属于(0,正无穷)上递减,则函数y=f(x)在x属于(负无穷大,0)是增函数,即当x1,x2属于(负无穷大,0)且x1<x2时,f(x1)<f(x2),且f(x1),f(

已知函数fx=lnx/x-x 1.求函数fx单调区间 2.设m>0求fx在[m.2m]上的最大值

1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个

已知函数 fx=2x×lnx-1 求函数fx的最小值及fx在点(1,f1)处的切线方程

1.f(x)=2xlnx-1,f‘(x)=2(lnx+1),令f‘(x)=0,得x=1/e,f“(x)=2/x,f“(1/e)=2e>0,所以x=1/e为极小点,极小值=f(1/e)=(-2/e)-1

已知定义在R上函数fx满足f(x+1)=3x+1 求函数fx解析式

令y=x+1,则f(y)=3(x+1)-2=3y-2即f(x)=3x-2再问:爲什麽是f(y)=3(x+1)-2再答:y=x+1,所以f(y)=f(x+1)=3(x+1)-2=3y-2再问:爲什麽是-