已知函数fx=2x-x分之a,且f(1)=3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:52:00
设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可
f(x)=(a^x-1)/(a^x+1)=1-2/(a^x+1)∵a>1,∴y=a^x单调递增,且a^x>0∴y=2/(a^x+1)单调递减,所以y=-2/(a^x+1)单调递增∴f(x)为单调递增函
F(x)=X^2+2x+a>0对x≥0时恒成立,a>-X^2-2x=-(x+1)²+1而二次函数-(x+1)²+1在[0,+∞)上是减函数,当x=0是取到最大值0,所以a>0.
2f(1/x)+f(x)=x①得:2f(1/(1/x))+f(1/x)=1/x2f(x)+f(1/x)=1/x②②x2-①得3f(x)=2/x-xf(x)=2/(3x)-x/3
(1)对a进行分类讨论:a=2时f(x)在R上单调增加;a《2时x《(a+2)/2时单调增加,(a+2)/2《x《2时单调减小,x》2时单调增加;a》2时x《2时单调增加,2《x《(a+2)/2时单调
(1) 等式化简后:f(2)=±(√19/2)+3
fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
解题思路:这个题如果是第一种形式,则比较简单,若是第二种形式,则较为复杂,需要用导数,不像是高一的内容。解题过程:解:当a=1时,f(x)=2x-x=x又定义域为[0,1],f(x)值域为[0,1]若
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
f(x)=2sin(x-π/6)cosx+2cos²x=(2sinxcosπ/6-2cosxsinπ/6)cosx+2cos²x=√3sinxcosx-cos²x+2co
肯定不是R上的增函数
定义域是Rf(-x)=(2^-x-1)/(2^-x+1)=(1-2^x)/(1+2^x)=-(2^x-1)/(2^x+1)=-f(x)所以f(x)=(2^x-1)/(2^x+1)是奇函数
定义域为(0,+∞)f'(x)=1+2/x²-a/x=(x²-ax+2)/x²f'(x)与g(x)=x²-ax+2符号一样对g(x)△=a²-8(a>
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
f(x)=lnx-ax²+(2-a)x,x>0f′(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=(2x+1)(1-ax)/x=(2+1/x)(1-ax)因为
1、对lnx知,x>0对f求导得:f'=1/x-2a/(x^2)f'>=0时,x>2a如果a0,无单减区间如果a>=0,则f的单增区间为x>=2a,此时单减区间为0
f(x)=sin(x/2)cos(x/2)+√3*sin²(x/2)+√3/2=1/2*sinx+√3/2*(1-cosx)+√3/2=1/2*sinx-√3/2*cosx+√3=sin(x
f'(x)=1-a/x=(x-a)/xf(x)的定义域是x>0谈论a的取值范围a0此时f'(x)恒>0f(x)单调递增,没有极值当a>0时令f'(x)>=0x>=a∴f(x)增区间是[a,+∞)减区间