已知函数fx=-√3sin²x sinxcosx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:13:39
fx=-√3cos2x-sin2x=-2sin(2x+π/3)所以最小正周期为πf'x=-4cos(2x+π/3),f'x>0时递增x在(π/12,π/3)上递增f'x=0,x=π/12.极小值f(π
f(x)=√3sin²x+sinxcosx=√3[(1-cos2x)/2]+1/2sin2x=1/2sin2x-√3/2cos2x+√3/2=sin(2x-π/3)+√3/2∵x∈[π/2,
(1)f(x)=2sin(2x+π/3)+2由2x+π/3=kπ+π/2,k∈Z得2x=kπ+π/6,k∈Z对称轴方程为x=kπ/2+π/12,k∈Z(2)g(x)=f(x)+m=2sin(2x+π/
fx=2sin(2x+pai/6)振幅A=2最小正周期T=2pai/2=paix∈【0,pai/]2xE[0,2pai]2x+pai/6E[pai/6,2pai+pai/6]很明显,设u=2x+pai
周期等于2派.g(x)=2sinx;基函数再问:有过程吗??再答:这可以看出来,还要过程吗,,,,周期等于2派/x前的数1===2派;;g(x)=2sint(x+pi/3+p1/3)=2sinx;si
f(x)=sin²x+√3sinxcosx+2cos²x,=√3sinxcosx+cos²x+1=√3/2sin2x+1/2(1+cos2x)+1=√3/2sin2x+1
发现你对三角函数公式之间的转化用的不是很熟啊,要努力!不过题目输入的不错,能不能告诉我是在哪里面输入的?我看你的办公软件用的挺好,将2sin^2(π/4+x)化简为1+sin2x,再与后面一项合并化简
1、最小正周期T=2π/2=π;最大值=2×1+2=4;2、单调递增式时-π/2+2kπ≤2x+π/3≤π/2+2kπ(k∈Z)-5π/6+2kπ≤2x≤π/6+2kπ(k∈Z)-5π/12+kπ≤x
1.T=πfx=2cosxsin(x+π/3)-√3sin^2x+sinxcosx=cosxsinx+√3cos^2x-√3sin^2x+sinxcosx=2sinxcosx+√3cos2x=sin2
向量m=(2sinx/4,2sin^2x/4-1),n=(cosx/4,-√3)f(x)=mn=2sin(x/4)cos(x/4)-√3[2sin^2(x/4)-1]=sin(x/2)+√3cos(x
f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)=cos(2x-π/3)+2sin(x-π/4)cos[π/2-(x+π/4)]=cos(2x-π/3)+2sin(x-π/
f(x)=(√3/2)sin2x-(1/2)[(cosx)^2-(sinx)^2]-1=(√3/2)sin2x-(1/2)cos2x-1=sin(2x-π/6)-1f(x)的最大值是0,最小值是-2,
答:y=f(x)=2√3sinxcosx-2sin²x=√3sin2x+cos2x-1=2*[(√3/2)sin2x+(1/2)cos2x]-1=2sin(2x+π/6)-1y=f(x)关于
f(x)=sinx-cosx=√2sin(x-4/π)(1).T=2π(2).f(x)max=√2f(x)min=-√2(3).sina+cosa=√2cos(a-π/4)cos(a-π/4)=√[1
你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号
(1)fx=sin(2x+φ)经过点(π/12,1)sin(π/6+φ)=1∴π/6+φ=π/2+2kπ,k∈Z∴φ=π/3+2kπ,k∈Z∵0
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
f(x)=√3sin2x-2sin²x=√3sin2x-(1-cos2x)=2sin(2x+π/6)-1∴当sin(2x+π/6)=1时f(x)max=2*1-1=1