已知函数fx)=根号3 2 Sin2x -Cos^2 x -1 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:21:28
2(x+根号x平方+1)大于等于0即可再一步一步拆根式注意根式内大于等于0但是整个函数的真数必须大于0.奇偶性的话看f(x)与f(-x)的关系相加为零为奇函数相等为偶函数.其余情况为非奇非偶函数.单调
f(x)=-√3sin²x+sinxcosx=√3/2cos2x+1/2sin2x-1/2=sin(2x+π/3)+1/2T=2π/2=πf(π/6)=sin(π/3+π/3)+1/2=(1
f(x)=√3sin²x+sinxcosx=√3[(1-cos2x)/2]+1/2sin2x=1/2sin2x-√3/2cos2x+√3/2=sin(2x-π/3)+√3/2∵x∈[π/2,
f(x)=1/2-1/2cos2x+√3/2sin2x-1/2=sin(2x-π/6)f(-π/12)=sin(-π/3)=-√3/2(2)-π/6
fx=2sin(2x+pai/6)振幅A=2最小正周期T=2pai/2=paix∈【0,pai/]2xE[0,2pai]2x+pai/6E[pai/6,2pai+pai/6]很明显,设u=2x+pai
f(x)=2√3sinxcosx+2sin^2x-1=√3sin2x-cos2x=2sin(2x-π/6)最小正周期T=π,单调递增区间:2kπ-π/2
函数f(x)=√(x+1)的定义域是x>-1.设任意x1、x2∈(-1,+∞),且x1
fx=2cosxsin(x+π/3)-√3sin^2x+sinxcosx+1=2cosx(√3/2cosx+1/2sinx)-√3sin^2x+sinxcosx+1=√3cos^2x-√3sin^2x
答:f(x)=2sin(x-π/3)cosx+sinxcosx+√3(sinx)^2=sin(x-π/3+x)+sin(x-π/3-x)+sinxcosx+(√3/2)(1-cos2x)=sin(2x
答:y=f(x)=2√3sinxcosx-2sin²x=√3sin2x+cos2x-1=2*[(√3/2)sin2x+(1/2)cos2x]-1=2sin(2x+π/6)-1y=f(x)关于
f(x)=sinx-cosx=√2sin(x-4/π)(1).T=2π(2).f(x)max=√2f(x)min=-√2(3).sina+cosa=√2cos(a-π/4)cos(a-π/4)=√[1
第一题A.第二题B
(1)化简可得f(x)=(sin(x/2))^2+((√3)/2)sinx-0.5f'(x)=sin(x/2)cos(x/2)+((√3)/2)cosx=sinx+√3cosx=0√3cosx=-si
你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号
(1)fx=sin(2x+φ)经过点(π/12,1)sin(π/6+φ)=1∴π/6+φ=π/2+2kπ,k∈Z∴φ=π/3+2kπ,k∈Z∵0
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
f(x)=sin(x/2)cos(x/2)+√3*sin²(x/2)+√3/2=1/2*sinx+√3/2*(1-cosx)+√3/2=1/2*sinx-√3/2*cosx+√3=sin(x
fx=2根号3sinxcosx+1-2sin^2x=2sin(2x+π/6)周期为π