已知函数f(x)=ln(1-x),x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:03:10
已知函数f(x)=ln(1-x),x
已知函数f(x)=ex次方-ln(x+1)

这题是极值问题.f(x)的定义域x>-1对f(x)求导,f'(x)=e^x-1/(x+1).令f(x)=0,得出e^x=1/(x+1)由图形知,x=0.f(x)只有一个极值点.当x=0时,f(x)取得

已知函数f(x)=ln(1+x)-kx 若f(x)的最大值为0,求k

f(x)=ln(1+x)-kx当k=0时f(x)=ln(1+x)无最大值定义域为1+x>0x>-1当k≠0时求导f'(x)=1/(x+1)-k=(1-kx-k)/(x+1)=[-kx+(1-k)]/(

导数题:已知函数F(x - 1/x)=ln x ,求F(x)的导数.

X-1/X=YXY=X-1X-XY=1X=1/1-YF(X)=LN(1/1-X)F'(x)=1/(1-x)

已知函数f(x)=ln(ax)/(x+1) - ln(ax) + ln(x+1),(a不等于0且为R) 1.求函数f(x

1.x+1>0,ax>0a>0时,x>0;a再问:.f'(x)=-lnax/(x+1)2-lnax不对啊..f(x)=ln(ax)/(x+1)-ln(ax)+ln(x+1)求导为什么是这个啊再答:求导

已知函数f(x)=e^x-ln(x+1)①求函数f(x)的最小值②已知0

求f(x)的导数导数为0处即是最小值点

已知函数f(x)=ln(x+1)+ax

f'(x)=1/(x+1)+a>=2xa>=2x+1/(x+1)g(x)=2x+1/(x+1)g'(x)=2-1/(x+1)²1

已知函数f(x)=ln(1+e^x)+x,x属于R

设X1>X2F(X1)-F(X2)=In[(1+e^x1)/(1+e^x2)]+x1-x2x1>x2x1-x2>0[(1+e^x1)/(1+e^x2)>1In[(1+e^x1)/(1+e^x2)]>0

已知函数f(x)=ln(x+1),

①f(x)=ln(x+1)定义域(-1,+∞)f(0)=0在(0,+∞)存在一点ε,0<ε<1/xf(1/x)-f(0)=f'(ε)(1/x-0)f'(x)=1/(x+1)∵0<ε<1/x∴1/(1/

已知函数f(x)=ln^2(1+x)-[x^2/(1+x)],求函数f(x)的极值

对f(x)求导得[2(1+x)㏑(1+x)-2x-x²]/(1+x)²,设分子为h(x),对其求导得2㏑(1+x)-2x㏑(1+x)≤x恒成立,所以h(x)单调递减,h(0)=0,

已知函数f(x)=2ln(x)-x^2.

题目:已知函数f(x)=2lnx-x^2.如果函数g(x)=f(x)-ax的图像与x轴交于两点A(x1,0),B(x2,0),且00上单调递减,得g'(px1+qx2)=0成立.结合已知可得2lnx1

已知函数f(x)=2f'(1)x-ln(x+1)

请参考:由函数f(x)=2f'(1)x-ln(x+1),因f'(1)是一个确定的导数值,是一常数,可令为a,即a=f'(1),由此有:f(x)=2ax-ln(x+1),f'(x)=2a-1/(x+1)

已知函数f(x)=e^x-ln(x+1).

1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+

已知函数f(x)=1+ln(x+1)/x,求函数定义域

由ln(x+1)得x+1>0得x>-1x为分母故不等于0定义域为x>-1且x≠0

计算下列各题(Ⅰ)已知函数f(x)=ln(2x+1)x

(Ⅰ)由f(x)=ln(2x+1)x,所以f′(x)=22x2+x−ln(2x+1)x2,则f′(2)=22×22+2−ln(2×2+1)22=15−ln54.(Ⅱ)∫π2−π2(xcosx−6sin

已知函数f(x)=ln(1+x)x.

(1)由已知函数求导得f′(x)=xx+1−ln(1+x)x2设g(x)=xx+1−ln(1+x),则g′(x)=1(x+1)2−1x+1=−x(x+1)2<0∴g(x)在(0,+∞)上递减,g(x)

(2012•湖南模拟)已知函数f(x)=12x2+x−(x+1)ln(x+1)

(1)函数定义域为(-1,+∞),f'(x)=x-ln(x+1),记g(x)=x-ln(x+1)g′(x)=1−1x+1=xx+1,(3分)当x∈(-1,0)时,g'(x)<0,g(x)在(-1,0)

已知函数f(x)=ln(x+x

f(-x)=ln(-x+x2+1)=ln(1x+x2+1)=-f(x),故f(x)为奇函数,则有f(-a)=-f(a),又由题意f(a)+f(b-1)=0,可得f(b-1)=-f(a)=f(-a),则