已知函数f(x)=4ln(x-1)+x2-(m+2)x+-m,(m为常数)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:12:30
这题是极值问题.f(x)的定义域x>-1对f(x)求导,f'(x)=e^x-1/(x+1).令f(x)=0,得出e^x=1/(x+1)由图形知,x=0.f(x)只有一个极值点.当x=0时,f(x)取得
X-1/X=YXY=X-1X-XY=1X=1/1-YF(X)=LN(1/1-X)F'(x)=1/(1-x)
求已知函数的取值范围x4对f(x)求导得f'(x)=-2/{(x-2)(x-4)}+1/4令f'(x)=0x1=0x2=6以x1x2为分点将函数的定义域分成四个子区间(自己做)讨论f'(x)的符号和函
求导:f'(x)=lnx+1,令f'(x)=0x=1/e显然定义域(0,正无穷)f'(x)
f'(x)=1/(x+1)+a>=2xa>=2x+1/(x+1)g(x)=2x+1/(x+1)g'(x)=2-1/(x+1)²1
①f(x)=ln(x+1)定义域(-1,+∞)f(0)=0在(0,+∞)存在一点ε,0<ε<1/xf(1/x)-f(0)=f'(ε)(1/x-0)f'(x)=1/(x+1)∵0<ε<1/x∴1/(1/
再问:您的图画对了我想知道怎么画出来的是否需要证明单调性什么的啊?再答:这是用几何画板软件画的再问:那解题过程咧?再答:这个题目你要用解出来增减区间,只有用导数,否则没办法
f(x)=ln(x+a)-x^2-xf'(x)=1/(x+a)-2x-1因为x=0处取得极值则f'(0)=1/a-1=0a=1f'(x)=1/(x+1)-2x-1=[1-2x(x+1)-(x+1)]/
首先要知道(lnx)'=1/x,然后一步一步求1.f'(x)=4*[1/(6x+5lnx)]*(6+5/x),f'(4)就把x=4带入2.f'(x)=4*(1/lnx)*(1/x)(a^x)'=lna
2.(1)当t>1时f(x)最小值为tlnt当0
题目:已知函数f(x)=2lnx-x^2.如果函数g(x)=f(x)-ax的图像与x轴交于两点A(x1,0),B(x2,0),且00上单调递减,得g'(px1+qx2)=0成立.结合已知可得2lnx1
(1)x-4y+4ln2-4=0 (2)当a≤0时,函数f(x)在区间(0,e]上无最小值;当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna;当a≥e时
1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+
(Ⅰ)由f(x)=ln(2x+1)x,所以f′(x)=22x2+x−ln(2x+1)x2,则f′(2)=22×22+2−ln(2×2+1)22=15−ln54.(Ⅱ)∫π2−π2(xcosx−6sin
(1)由已知函数求导得f′(x)=xx+1−ln(1+x)x2设g(x)=xx+1−ln(1+x),则g′(x)=1(x+1)2−1x+1=−x(x+1)2<0∴g(x)在(0,+∞)上递减,g(x)
首先判断奇偶要看定义域是否关于原点对称,只有在对称情况下才能接下来判断定义域e^x-e^(-x)>0e^x>e^(-x)x>-x2x>0x>0定义域都不关于原点对称,∴是非奇非偶函数这是个复合函数外面
f(-x)=ln(-x+x2+1)=ln(1x+x2+1)=-f(x),故f(x)为奇函数,则有f(-a)=-f(a),又由题意f(a)+f(b-1)=0,可得f(b-1)=-f(a)=f(-a),则
函数f(x)=1/4x²-ln(1-x),(x<1)求导函数函数f′(x)=[1/4x²-ln(1-x)]′=1/2x-1/(1-x)*(1-x)′=1/2x+1/(1-x)(x<