已知函数f(x)等于2sin
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:28:07
①原式=f(x)=2cos2x+sinx^2=2cos2x+1-cos2x/2=3/2cos2x+1/2故f(π/3)=3/2*cos2π/3+1/2=-3/4+1/2=-1/4②依f(x)=3/2c
f(x)=sin²x+sinxcosx=[1-cos(2x)]/2+sin(2x)/2=sin(2x)/2-cos(2x)/2+1/2=(√2/2)sin(2x-π/4)+1/2最小正周期T
f(x)=2cosxsinx-(2cos^2x-1)=sin2x-cos2x=根号2[sin(2x-pi/4)],所以最小正周期为pi,最大值为根号2,最小值为负根号2,
1、由于函数g(x)=sin(2(x-a)+π/3)为偶函数,所以g(x)的图像关于y轴对称,即函数g(x)当x=0时取得最值,所以g(0)=±1,解得sin(π/3-2a)=±1,sin(2a-π/
令x=π/3代入f((π/3)+x)=f((π/3)-x)f(0)=sinA+1=f(2π/3)=sin((4π/3)-A)+1sinA=sin((4π/3)-A)=sin(4π/3)cosA-cos
∵f(x)=2sin(π-x)cosx=2sinxcosx=sin2x1、最小正周期T=2π/2=π.2、∵-π/6≤x≤π/2∴-π/3≤2x≤π,∴-√3/2≤f(x)≤1,∴最大值1,最小值-√
f(x)=sin2x-2sin^2x=sin2x+cos2x-1=√2sin(2x+π/4)-1.(1)T=2π/2=π.(2).当2x+π/4=2kπ+π/2,k∈Z,即x=kπ+π/8,k∈Z时,
f(x)=cosx+sinxf(x)=√2sin(x+π/4)(1)递增区间:2kπ-π/2≤x+π/4≤2kπ+π/2得:2kπ-3/4π≤x≤2kπ+π/4递增区间是:[2kπ-3π/4,2kπ+
/>|x|小于等于派/4,∴sinx∈[0,√2/2]f(x)=-sin^2(x)+sinx+1=-(sinx-1/2)²+5/4∴当sinx=1/2时,f(x)有最大值5/4sinx=0时
f(x)=sin2x+cos2x-1=√2sin(2x+π/4)-1.1、最小正周期是π,最大值时2x+π/4=2kπ+π/2,即x=kπ+π/4,k是整数.再问:已知函数f(x)=2sin(∏-X)
f(x)=2sinx*sin(π/2+x)-2sin^2x+1=2sinxcosx+cos2x=sin2x+cos2x=√2sin(2x+π/4)因为f(x0/2)=根2/3所以sin(x0+π/4)
因为f(x)=sinx+cosx=√2sin(x+π/4)第一题T=2π/1=2π第二题当sin(x+π/4)=1时,为最大值,即f(x)=√2sin(x+π/4)=-1时,为最小值,即f(x)=-√
(1)偶函数,则f(x)=f(-x)即:sin(2x+φ)=sin(-2x+φ),根据积化和差公式sin(2x)*cos(φ)+cos(2x)*sin(φ)=sin(-2x)*cos(φ)+cos(-
∵x∈[0,π3],∴π3≤x+π3≤2π3,根据正弦函数的性质得,32≤sin(x+π3)≤1,则3≤2sin(x+π3)≤2,∴f(x)的值域是[3,2].故答案为:[3,2].
f(x)=2sin(派-x)cosx=2sinxcosx=sin2x最小正周期=2pi/2=pi(pi就是“派”)f(-pi/6)=sin(-pi/3)=-(根号3)/2f(pi/2)=sin(pi)
选Cf(x)=log3(2-4sin²x)f(x)=log3[2(1-2sin²x)]f(x)=log3(2cos2x)f(π/12)=log3{2cos[2*(π/12)]}=l
1:(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2
如果我知识点还没忘记的话,应该是(n+1/12)π,其中n=0,1,2,3,4,.因为sinx根据(2nπ+π/2)对称,列出等式2x+π/3=2nπ+π/2即可
向量b=(2cos,sinx)f(x)=2cos^2x+sinxcosx+1=1/2sin2x+cos2x+2=√5/2sin(2x+Φ)+2这个函数的周期是π